Econometric-Theory-and-Methods---Russell-Davidson-and-James-G.-MacKinnon.pdf
(
5457 KB
)
Pobierz
260840132 UNPDF
www.GetPedia.com
*More than 150,000 articles in the
search database
*Learn how almost everything
works
Chapter1
RegressionModels
1.1Introduction
Regressionmodelsformthecoreofthedisciplineofeconometrics.Although
econometriciansroutinelyestimateawidevarietyofstatisticalmodels,using
manydi®erenttypesofdata,thevastmajorityoftheseareeitherregression
modelsorcloserelativesofthem.Inthischapter,weintroducetheconceptof
aregressionmodel,discussseveralvarietiesofthem,andintroducetheestima-
tionmethodthatismostcommonlyusedwithregressionmodels,namely,least
squares.Thisestimationmethodisderivedbyusingthemethodofmoments,
whichisaverygeneralprincipleofestimationthathasmanyapplicationsin
econometrics.
Themostelementarytypeofregressionmodelisthesimplelinearregression
model,whichcanbeexpressedbythefollowingequation:
y
t
=
¯
1
+
¯
2
X
t
+
u
t
:
(1
:
01)
Thesubscript
t
isusedtoindextheobservationsofasample.Thetotalnum-
berofobservations,alsocalledthesamplesize,willbedenotedby
n
.Thus,
forasampleofsize
n
,thesubscript
t
runsfrom1to
n
.Eachobservation
comprisesanobservationonadependentvariable,writtenas
y
t
forobserva-
tion
t
,andanobservationonasingleexplanatoryvariable,orindependent
variable,writtenas
X
t
.
Therelation(1.01)linkstheobservationsonthedependentandtheexplana-
toryvariablesforeachobservationintermsoftwounknownparameters,
¯
1
and
¯
2
,andanunobservederrorterm,
u
t
.Thus,ofthefivequantitiesthat
appearin(1.01),two,
y
t
and
X
t
,areobserved,andthree,
¯
1
,
¯
2
,and
u
t
,are
not.Threeofthem,
y
t
,
X
t
,and
u
t
,arespecifictoobservation
t
,whilethe
othertwo,theparameters,arecommontoall
n
observations.
Hereisasimpleexampleofhowaregressionmodellike(1.01)couldarisein
economics.Supposethattheindex
t
isatimeindex,asthenotationsuggests.
Eachvalueof
t
couldrepresentayear,forinstance.Then
y
t
couldbehouse-
holdconsumptionasmeasuredinyear
t
,and
X
t
couldbemeasureddisposable
incomeofhouseholdsinthesameyear.Inthatcase,(1.01)wouldrepresent
whatinelementarymacroeconomicsiscalledaconsumptionfunction.
Copyrightc
°
1999,RussellDavidsonandJamesG.MacKinnon 3
4 RegressionModels
Ifforthemomentweignorethepresenceoftheerrorterms,
¯
2
isthemarginal
propensitytoconsumeoutofdisposableincome,and
¯
1
iswhatissometimes
calledautonomousconsumption.Asistrueofagreatmanyeconometricmod-
els,theparametersinthisexamplecanbeseentohaveadirectinterpretation
intermsofeconomictheory.Thevariables,incomeandconsumption,doin-
deedvaryinvaluefromyeartoyear,astheterm“variables”suggests.In
contrast,theparametersreflectaspectsoftheeconomythatdonotvary,but
takeonthesamevalueseachyear.
Thepurposeofformulatingthemodel(1.01)istotrytoexplaintheobserved
valuesofthedependentvariableintermsofthoseoftheexplanatoryvariable.
Accordingto(1.01),foreach
t
,thevalueof
y
t
isgivenbyalinearfunction
of
X
t
,pluswhatwehavecalledtheerrorterm,
u
t
.Thelinear(strictlyspeak-
ing,a±ne
1
)function,whichinthiscaseis
¯
1
+
¯
2
X
t
,iscalledtheregression
function.Atthisstageweshouldnotethat,aslongaswesaynothingabout
theunobservedquantity
u
t
,(1.01)doesnottellusanything.Infact,wecan
allowtheparameters
¯
1
and
¯
2
tobequitearbitrary,since,foranygiven
¯
1
and
¯
2
,(1.01)canalwaysbemadetobetruebydefining
u
t
suitably.
Ifwewishtomakesenseoftheregressionmodel(1.01),then,wemustmake
someassumptionsaboutthepropertiesoftheerrorterm
u
t
.Preciselywhat
thoseassumptionsarewillvaryfromcasetocase.Inallcases,though,itis
assumedthat
u
t
isarandomvariable.Mostcommonly,itisassumedthat,
whateverthevalueof
X
t
,theexpectationoftherandomvariable
u
t
iszero.
Thisassumptionusuallyservestoidentifytheunknownparameters
¯
1
and
¯
2
,inthesensethat,undertheassumption,(1.01)canbetrueonlyforspecific
valuesofthoseparameters.
Thepresenceoferrortermsinregressionmodelsmeansthattheexplanations
thesemodelsprovideareatbestpartial.Thiswouldnotbesoiftheerror
termscouldbedirectlyobservedaseconomicvariables,forthen
u
t
couldbe
treatedasafurtherexplanatoryvariable.Inthatcase,(1.01)wouldbea
relationlinking
y
t
to
X
t
and
u
t
inacompletelyunambiguousfashion.Given
X
t
and
u
t
,
y
t
wouldbecompletelyexplainedwithouterror.
Ofcourse,errortermsarenotobservedintherealworld.Theyareincluded
inregressionmodelsbecausewearenotabletospecifyallofthereal-world
factorsthatdetermine
y
t
.Whenwesetupourmodelswith
u
t
asaran-
domvariable,whatwearereallydoingisusingthemathematicalconceptof
randomnesstomodelour
ignorance
ofthedetailsofeconomicmechanisms.
Whatwearedoingwhenwesupposethatthemeanofanerrortermiszerois
supposingthatthefactorsdetermining
y
t
thatweignorearejustaslikelyto
make
y
t
biggerthanitwouldhavebeenifthosefactorswereabsentasthey
aretomake
y
t
smaller.Thusweareassumingthat,onaverage,thee®ects
oftheneglecteddeterminantstendtocancelout.Thisdoesnotmeanthat
1
Afunction
g
(
x
)issaidtobea±neifittakestheform
g
(
x
)=
a
+
bx
fortwo
realnumbers
a
and
b
.
Copyrightc
°
1999,RussellDavidsonandJamesG.MacKinnon
1.2Distributions,Densities,andMoments 5
thosee®ectsarenecessarilysmall.Theproportionofthevariationin
y
t
that
isaccountedforbytheerrortermwilldependonthenatureofthedataand
theextentofourignorance.Evenifthisproportionislarge,asitwillbein
somecases,regressionmodelslike(1.01)canbeusefuliftheyallowustosee
how
y
t
isrelatedtothevariables,like
X
t
,thatwecanactuallyobserve.
Muchoftheliteratureineconometrics,andthereforemuchofthisbook,is
concernedwithhowtoestimate,andtesthypothesesabout,theparameters
ofregressionmodels.Inthecaseof(1.01),theseparametersaretheconstant
term,orintercept,
¯
1
,andtheslopecoe±cient,
¯
2
.Althoughwewillbegin
ourdiscussionofestimationinthischapter,mostofitwillbepostponeduntil
laterchapters.Inthischapter,weareprimarilyconcernedwithunderstanding
regressionmodelsasstatisticalmodels,ratherthanwithestimatingthemor
testinghypothesesaboutthem.
Inthenextsection,wereviewsomeelementaryconceptsfromprobability
theory,includingrandomvariablesandtheirexpectations.Manyreaderswill
alreadybefamiliarwiththeseconcepts.TheywillbeusefulinSection1.3,
wherewediscussthemeaningofregressionmodelsandsomeoftheforms
thatsuchmodelscantake.InSection1.4,wereviewsometopicsfrommatrix
algebraandshowhowmultipleregressionmodelscanbewrittenusingmatrix
notation.Finally,inSection1.5,weintroducethemethodofmomentsand
showhowitleadstoordinaryleastsquaresasawayofestimatingregression
models.
1.2Distributions,Densities,andMoments
Thevariablesthatappearinaneconometricmodelaretreatedaswhatstatis-
ticianscallrandomvariables.Inordertocharacterizearandomvariable,we
mustfirstspecifythesetofallthepossiblevaluesthattherandomvariable
cantakeon.Thesimplestcaseisascalarrandomvariable,orscalarr.v.The
setofpossiblevaluesforascalarr.v.maybethereallineorasubsetofthe
realline,suchasthesetofnonnegativerealnumbers.Itmayalsobetheset
ofintegersorasubsetofthesetofintegers,suchasthenumbers1,2,and3.
Sincearandomvariableisacollectionofpossibilities,randomvariablescannot
beobservedassuch.Whatwedoobservearerealizationsofrandomvariables,
arealizationbeingonevalueoutofthesetofpossiblevalues.Forascalar
randomvariable,eachrealizationisthereforeasinglerealvalue.
If
X
isanyrandomvariable,probabilitiescanbeassignedtosubsetsofthe
fullsetofpossibilitiesofvaluesfor
X
,insomecasestoeachpointinthat
set.Suchsubsetsarecalledevents,andtheirprobabilitiesareassignedbya
probabilitydistribution,accordingtoafewgeneralrules.
Copyrightc
°
1999,RussellDavidsonandJamesG.MacKinnon
6 RegressionModels
DiscreteandContinuousRandomVariables
Theeasiestsortofprobabilitydistributiontoconsiderariseswhen
X
isa
discreterandomvariable,whichcantakeonafinite,orperhapsacountably
infinitenumberofvalues,whichwemaydenoteas
x
1
;x
2
;:::
.Theprobability
distributionsimplyassignsprobabilities,thatis,numbersbetween0and1,
toeachofthesevalues,insuchawaythattheprobabilitiessumto1:
1
X
p
(
x
i
)=1
;
i
=1
where
p
(
x
i
)istheprobabilityassignedto
x
i
.Anyassignmentofnonnega-
tiveprobabilitiesthatsumtooneautomaticallyrespectsallthegeneralrules
alludedtoabove.
Inthecontextofeconometrics,themostcommonlyencountereddiscreteran-
domvariablesoccurinthecontextofbinarydata,whichcantakeonthe
values0and1,andinthecontextofcountdata,whichcantakeonthevalues
0,1,2,
:::
;seeChapter11.
Anotherpossibilityisthat
X
maybeacontinuousrandomvariable,which,for
thecaseofascalarr.v.,cantakeonanyvalueinsomecontinuoussubsetofthe
realline,orpossiblythewholerealline.Thedependentvariableinaregression
modelisnormallyacontinuousr.v.Foracontinuousr.v.,theprobability
distributioncanberepresentedbyacumulativedistributionfunction,orCDF.
Thisfunction,whichisoftendenoted
F
(
x
),isdefinedontherealline.Its
valueisPr(
X·x
),theprobabilityoftheeventthat
X
isequaltoorless
thansomevalue
x
.Ingeneral,thenotationPr(
A
)signifiestheprobability
assignedtotheevent
A
,asubsetofthefullsetofpossibilities.Since
X
is
continuous,itdoesnotreallymatterwhetherwedefinetheCDFasPr(
X·x
)
orasPr(
X<x
)here,butitisconventionaltousetheformerdefinition.
Noticethat,intheprecedingparagraph,weused
X
todenotearandom
variableand
x
todenotearealizationof
X
,thatis,aparticularvaluethatthe
randomvariable
X
maytakeon.Thisdistinctionisimportantwhendiscussing
themeaningofaprobabilitydistribution,butitwillrarelybenecessaryin
mostofthisbook.
ProbabilityDistributions
Wemaynowmakeexplicitthegeneralrulesthatmustbeobeyedbyproba-
bilitydistributionsinassigningprobabilitiestoevents.Therearejustthree
oftheserules:
(i)Allprobabilitiesliebetween0and1;
(ii)Thenullsetisassignedprobability0,andthefullsetofpossibilitiesis
assignedprobability1;
(iii)Theprobabilityassignedtoaneventthatistheunionoftwodisjoint
eventsisthesumoftheprobabilitiesassignedtothosedisjointevents.
Copyrightc
°
1999,RussellDavidsonandJamesG.MacKinnon
Plik z chomika:
jimmybt
Inne pliki z tego folderu:
(2005) Erik Von Markovik (Mystery) - Metodą Mystery Zwab Piękną Kobietę Do Łóżka (The Mystery Method How To Get Beautiful Women Into Bed).pdf
(1676 KB)
Introduction to Econometrics - Dougherty, C [2001].pdf
(2456 KB)
Econometric-Theory-and-Methods---Russell-Davidson-and-James-G.-MacKinnon.pdf
(5457 KB)
David Mura - A Male Grief_ notes on pornography and addiction, an essay-Milkweed Editions (1987).pdf
(2213 KB)
Matthew Parynik Mendel - The Male Survivor_ The Impact of Sexual Abuse-SAGE Publications (1994).pdf
(12717 KB)
Inne foldery tego chomika:
Pliki dostępne do 01.06.2025
Pliki dostępne do 02.08.2019
Pliki dostępne do 08.07.2024
Pliki dostępne do 19.01.2025
Pliki dostępne do 21.01.2024
Zgłoś jeśli
naruszono regulamin