Structural Biology - Practical NMR Applications - Q. Teng (Springer, 2005) WW.pdf

(2801 KB) Pobierz
764595000 UNPDF
764595000.001.png
Structural Biology:
Practical NMR Applications
Structural Biology:
Practical NMR Applications
QUINCY TENG
Department of Chemistry
University of Georgia
Athens, Georgia
764595000.002.png
ISBN: 0-387-24367-4 (hardback)
ISBN: 0-387-24368-2 (eBook)
A C.I.P. record for this book is available from the Library of Congress
2005 Springer Science Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer Science Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.
Printed in the United States of America
987654321
springeronline.com
Contents
PREFACE .................................................... xi
CHAPTER 1. BASIC PRINCIPLES OF NMR ........................ 1
1.1. Introduction .............................................. 1
1.2. Nuclear Spin in a Static Magnetic Field ........................... 1
1.2.1. Precession of Nuclear Spins in a Magnetic Field ................ 1
1.2.2. Energy States and Population ............................. 3
1.2.3. Bulk Magnetization ................................... 5
1.3. Rotating Frame ............................................ 6
1.4. Bloch Equations ........................................... 9
1.5. Fourier Transformation and Its Applications in NMR .................. 12
1.5.1. Fourier Transformation and Its Properties Useful for NMR ......... 12
1.5.2. Excitation Bandwidth .................................. 14
1.5.3. Quadrature Detection .................................. 15
1.6. Nyquist Theorem and Digital Filters .............................. 16
1.7. Chemical Shift ............................................ 17
1.8. Nuclear Coupling .......................................... 23
1.8.1. Scalar Coupling ...................................... 23
1.8.2. Spin Systems ........................................ 26
1.8.3. Dipolar Interaction .................................... 27
1.8.4. Residual Dipolar Coupling .............................. 28
1.9. Nuclear Overhauser Effect .................................... 32
1.10. Relaxation ............................................... 35
1.10.1. Correlation Time and Spectral Density Function ................ 36
1.10.2. Spin-Lattice Relaxation ................................. 36
1.10.3. T 2 Relaxation ....................................... 39
1.11. Selection of Coherence Transfer Pathways ......................... 42
1.12. Approaches to Understanding NMR Experiments ..................... 42
1.12.1. Vector Model ....................................... 43
1.12.2. Product Operator Description of Building Blocks in a Pulse Sequence . 44
1.12.2.1. Spin-Echo of Uncoupled Spins .................... 44
1.12.2.2. Spin-Echo of Coupled Spins ...................... 45
1.12.2.3. Insensitive Nuclei Enhanced by Polarization Transfer ..... 46
1.12.3. Introduction to Density Matrix ............................ 47
v
Zgłoś jeśli naruszono regulamin