Practical Applied Math. - Modelling, Analysis, Approximation - S. Howison (2003) WW.pdf

(1314 KB) Pobierz
642501189 UNPDF
Practical Applied Mathematics
Modelling, Analysis, Approximation
Sam Howison
OCIAM
Mathematical Institute
Oxford University
October 10, 2003
2
Contents
1 Introduction 9
1.1 What is modelling/why model? ................. 9
1.2 Howtousethisbook....................... 9
1.3 acknowledgements......................... 9
I Modelling techniques
11
2 The basics of modelling 13
2.1 Introduction ............................ 13
2.2 Whatdowemeanbyamodel? ................. 14
2.3 Principles of modelling . . . ................... 16
2.3.1 Example:inviscidfluidmechanics............ 17
2.3.2 Example:viscousfluids.................. 18
2.4 Conservationlaws......................... 21
2.5 Conclusion ............................. 22
3Un sanddimen ions 25
3.1 Introduction ............................ 25
3.2 Unitsanddimensions....................... 25
3.2.1 Example:heatflow.................... 27
3.3 Electricfieldsandelectrostatics ................. 28
4 Dimensional analysis 39
4.1 Nondimensionalisation ...................... 39
4.1.1 Example:advection-diffusion .............. 39
4.1.2 Example: the damped pendulum ............ 43
4.1.3 Example:beamsandstrings............... 45
4.2 TheNavier–Stokesequations................... 47
4.2.1 Waterinthebathtub................... 50
4.3 Buckingham’sPi-theorem .................... 51
3
4
CONTENTS
4.4 Onwards.............................. 53
5 Case study: hair modelling and cable laying 61
5.1 TheEuler–Bernoullimodelforabeam ............. 61
5.2 Hair modelling .......................... 63
5.3 Cable-laying............................ 64
5.4 Modelling and analysis ...................... 65
5.4.1 Boundary conditions . . ................. 67
5.4.2 Effectiveforcesandnondimensionalisation ....... 67
6 Case study: the thermistor 1 73
6.1 Thermistors............................ 73
6.1.1 Asimplemodel...................... 73
6.2 Nondimensionalisation ...................... 75
6.3 Athermistorinacircuit ..................... 77
6.3.1 Theone-dimensionalmodel ............... 78
7 Case study: electrostatic painting 83
7.1 Electrostaticpainting....................... 83
7.2 Fieldequations .......................... 84
7.3 Boundary conditions . ...................... 86
7.4 Nondimensionalisation ...................... 87
II Mathematical techniques
91
8 Partial differential equations 93
8.1 First-orderequations ....................... 93
8.2 Example:Poissonprocesses ................... 97
8.3 Shocks............................... 99
8.3.1 TheRankine–Hugoniotconditions............101
8.4 Nonlinearequations........................102
8.4.1 Example:sprayforming .................102
9 Case study: trac modelling 105
9.1 Case study: trac modelling . . .................105
9.1.1 Localspeed-densitylaws.................107
9.2 Solutions with discontinuities: shocks and the Rankine–Hugoniot
relations..............................108
9.2.1 Tracjams ........................109
9.2.2 Traclights........................109
CONTENTS
5
10 The delta function and other distributions 111
10.1 Introduction ............................111
10.2Apointforceonastretchedstring;impulses..........112
10.3 Informal definition of the delta and Heaviside functions . . . . 114
10.4Examples .............................117
10.4.1 Apointforceonawirerevisited.............117
10.4.2 Continuous and discrete probability. . . ........117
10.4.3 The fundamental solution of the heat equation . . . . . 119
10.5Balancingsingularities ......................120
10.5.1 TheRankine–Hugoniotconditions............120
10.5.2 Casestudy:cable-laying .................121
10.6Green’sfunctions .........................122
10.6.1 Ordinarydifferentialequations..............122
10.6.2 Partialdifferentialequations...............125
11 Theory of distributions 137
11.1 Test functions ...........................137
11.2Theactionofatestfunction...................138
11.3Definitionofadistribution....................139
11.4Furtherpropertiesofdistributions................140
11.5Thederivativeofadistribution .................141
11.6Extensionsofthetheoryofdistributions ............142
11.6.1 Morevariables.......................142
11.6.2 Fouriertransforms ....................142
12 Case study: the pantograph 155
12.1Whatisapantograph?......................155
12.2Themodel.............................156
12.2.1 Whathappensatthecontactpoint? ..........158
12.3Impulsiveattachment.......................159
12.4Solutionnearasupport......................160
12.5Solutionforawholespan.....................162
III Asymptotic techniques
171
13 Asymptotic expansions 173
13.1 Introduction ............................173
13.2Ordernotation ..........................175
13.2.1 Asymptoticsequencesandexpansions..........177
13.3Convergenceanddivergence ...................178
Zgłoś jeśli naruszono regulamin