_Ebook__Prentice_Hall_-_Plc_Programming_Methods_And_Applications.pdf

(6307 KB) Pobierz
649132707 UNPDF
649132707.001.png
Programmable Logic Controllers:
Programming Methods
and Applications
by
John R. Hackworth
and
Frederick D. Hackworth, Jr.
Table of Contents
Chapter 1 - Ladder Diagram Fundamentals
Chapter 2 - The Programmable Logic Controller
Chapter 3 - Fundamental PLC Programming
Chapter 4 - Advanced Programming Techniques
Chapter 5 - Mnemonic Programming Code
Chapter 6 - Wiring Techniques
Chapter 7 - Analog I/O
Chapter 8 - Discrete Position Sensors
Chapter 9 - Encoders, Transducers, and Advanced Sensors
Chapter 10 - Closed Loop and PID Control
Chapter 11 - Motor Controls
Chapter 12 - System Integrity and Safety
Preface
Most textbooks related to programmable controllers start with the basics of
ladder logic, Boolean algebra, contacts, coils and all the other aspects of learning to
program PLCs. However, once they get more deeply into the subject, they generally
narrow the field of view to one particular manufacturer's unit (usually one of the more
popular brands and models), and concentrate on programming that device with it's
capabilities and peculiarities. This is worthwhile if the desire is to learn to program that
unit. However, after finishing the PLC course, the student will most likely be employed
in a position designing, programming, and maintaining systems using PLCs of another
brand or model, or even more likely, many machines with many different brands and
models of PLC. It seems to the authors that it would be more advantageous to
approach the study of PLCs using a general language that provides a thorough
knowledge of programming concepts that can be adapted to all controllers. This
language would be based on a collection of different manufacturer types with generally
the same programming technique and capability. Although it would be impossible to
teach one programming language and technique that would be applicable to each and
every programmable controller on the market, the student can be given a thorough
insight into programming methods with this general approach which will allow him or her
to easily adapt to any PLC encountered.
Therefore, the goal of this text is to help the student develop a good general
working knowledge of programmable controllers with concentration on relay ladder logic
techniques and how the PLC is connected to external components in an operating
control system. In the course of this work, the student will be presented with real world
programming problems that can be solved on any available programmable controller or
PLC simulator. Later chapters in this text relate to more advanced subjects that are
more suitable for an advanced course in machine controls. The authors desire that
this text not only be used to learn programmable logic controllers, but also that this text
will become part of the student’s personal technical reference library.
Readers of this text should have a thorough understanding of fundamental ac
and dc circuits, electronic devices (including thyristors), a knowledge of basic logic
gates, flip flops, and Boolean algebra, and college algebra and trigonometry. Although
a knowledge of calculus will enhance the understanding of PID controls, it is not
required in order to learn how to properly tune a PID.
ii
Chapter 1 - Ladder Diagram Fundamentals
Chapter 1 - Ladder Diagram Fundamentals
1-1. Objectives
Upon completion of this chapter, you will be able to
identify the parts of an electrical machine control diagram including rungs,
branches, rails, contacts, and loads.
correctly design and draw a simple electrical machine control diagram.
recognize the difference between an electronic diagram and an electrical machine
diagram.
recognize the diagramming symbols for common components such as switches,
control transformers, relays, fuses, and time delay relays.
understand the more common machine control terminology.
1-2. Introduction
Machine control design is a unique area of engineering that requires the knowledge
of certain specific and unique diagramming techniques called ladder diagramming.
Although there are similarities between control diagrams and electronic diagrams, many
of the component symbols and layout formats are different. This chapter provides a study
of the fundamentals of developing, drawing and understanding ladder diagrams. We will
begin with a description of some of the fundamental components used in ladder diagrams.
The basic symbols will then be used in a study of boolean logic as applied to relay
diagrams. More complicated circuits will then be discussed.
1-3. Basic Components and Their Symbols
We shall begin with a study of the fundamental components used in electrical
machine controls and their ladder diagram symbols. It is important to understand that the
material covered in this chapter is by no means a comprehensive coverage of all types of
machine control components. Instead, we will discuss only the most commonly used ones.
Some of the more exotic components will be covered in later chapters.
Control Transformers
For safety reasons, machine controls are low voltage components. Because the
switches, lights and other components must be touched by operators and maintenance
personnel, it is contrary to electrical code in the United States to apply a voltage higher than
1-1
Zgłoś jeśli naruszono regulamin