Design and Development of Low-Loss Transformer for Powering Small Implantable Medical Devices-gWI.pdf

(814 KB) Pobierz
640080659 UNPDF
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 4, NO. 2, APRIL 2010
77
Design and Development of Low-Loss Transformer
for Powering Small Implantable Medical Devices
Kenji Shiba , Member, IEEE , Akira Morimasa, and Harutoyo Hirano
ABSTRACT— Small implantable medical devices, such as wireless
capsule endoscopes, that can be swallowed have previously been
developed. However, these devices cannot continuously operate
for more than 8 h because of battery limitations; moreover, addi-
tional functionalities cannot be introduced. This paper proposes
a design method for a high-efficiency energy transmission trans-
former (ETT) that can transmit energy transcutaneously to small
implantable medical devices using electromagnetic induction.
First, the authors propose an unconventional design method to
develop such a high-efficiency ETT. This method can be readily
used to calculate the exact transmission efficiency for changes in
the material and design parameters (i.e., the magnetic material,
transmission frequency, load resistance, etc.). Next, the ac-to-ac
energy transmission efficiency is calculated and compared with
experimental measurements. Then, suitable conditions for prac-
tical transmission are identified. A maximum efficiency of 33.1%
can be obtained at a transmission frequency of 500 kHz and a
receiving power of 100 mW for a receiving coil size of 5mm 20
mm. Future design optimization is possible by using this method.
INDEX TERMS— Capsule endoscope, energy transmission, im-
plantable medical device, magnetic material, transmission
efficiency.
wireless endoscope, and it became possible to transfer energy
up to 50 mW with an efficiency of 36% at a distance of 30 mm
(an efficiency of less than 10% at a distance of 70 mm). Mori-
masa [23] and Hirano [24] developed the air-core-type trans-
former for implantable medical devices, and their receiving coil
10 mm in diameter could receive 30 mW with an efficiency of
16% at a distance of 100 mm. In this research, however, mag-
netic material was not adopted and its loss was not considered.
To obtain more power and to increase energy transmission ef-
ficiency, the introduction of magnetic material into small im-
plantable medical devices is expected. Leuerer [25] developed
a planar coil with a magnetic layer for a telemetric system using
finite-element method (FEM) analysis, and 4–6 mW of energy
could be transferred to the 6-mm diameter receiving coil. How-
ever, FEM analysis is time-consuming and expensive, because
the designer must make and analyze each model with 2-D or
3-D software. Therefore, for a quick analysis of various types of
transformers using various types of magnetic materials at var-
ious frequencies, it is not an adequate method. Incidentally, an
energy transmission transformer (ETT) for an industrial instru-
ment has already been developed [26]–[29]. For example, Kim
et al. [26] transmitted about 40 W using a transmitting coil of
3 000 mm and a receiving coil of 2 500 mm at a transmission
distance of 3 mm. However, this conventional design method
does not consider small magnetic loss and it allows a compar-
atively large power loss because the industrial transformer is
available unless the magnetic material reaches magnetic satu-
ration. Moreover, an industrial transformer is allowed to have a
55–140 C increase in temperature, because there is no limit ex-
cept the Curie temperature of the magnetic core or the melting
temperature of the electrical insulator [30]. For a capsule endo-
scope or implantable medical device, the increase in tempera-
ture of various parts of the transformer must be in the range of
2 –5 at most [31].
In this paper, we propose a design method for the bconstruc-
tion of an ETT for small implantable medical devices. The de-
sign method includes new formulas that accurately express core
loss.
such as a wireless capsule endoscope and a nerve stimu-
lator have been developed [2]–[17]. The M2A [2]–[12] (Given
Imaging Ltd.), commercially released in 2001, is a wireless cap-
sule endoscope that is 26 mm long and 11 mm in diameter. The
Endo Capsule [17] (Olympus Corp.), which is of the same size,
was released in 2005. These capsule endoscopes capture images
at 2 frames/s for 8 h using internal batteries. However, other op-
tional functions for capsule endoscopy are necessary, such as
sampling or spraying medicine [18]. And if these optional func-
tions are included in a capsule endoscope, its working time re-
duces. Thus, some methods for supplying energy to a capsule
endoscope are needed.
Some researchers have studied the use of wireless energy
transmission systems for implantable medical devices. For ex-
ample, Neagu [19] designed a planar microcoil (air core type)
for implantable microsystems, and confirmed that a receiving
coil with a diameter of 4.5 mm can receive a few milliwatts.
Puers [20]–[22] designed an inductive power-link system for a
II. E NERGY T RANSMISSION S YSTEM
Fig. 1 shows the energy transmission system for implantable
medical devices. The power is transmitted transcutaneously by
electromagnetic induction between two coils, one placed inside
and the other outside the body. For a wireless capsule endo-
scope, the receiving coil must have the dimensions mm
mm [4]. The power consumption of a commercial capsule
endoscope is estimated at about 10–30 mW [16] and for op-
tional functions, such as self-propulsion and drug administration
Manuscript received May 18, 2009; revised August 10, 2009. Current version
published March 24, 2010. This paper was recommended by Associate Editor
R. Sarpeshkar.
The authors are with Graduate school of Engineering, Hiroshima Univer-
sity, Kagamiyama, Hiroshima, 739-8527, Japan (e-mail: kenjishiba@nifty.com;
morimasa@bsys.hiroshima-u.ac.jp; harutoyo@bsys.hiroshima-u.ac.jp).
Digital Object Identifier 10.1109/TBCAS.2009.2034364
1932-4545/$26.00 © 2010 IEEE
AUTHORIZED LICENSED USE LIMITED TO: IEEE XPLORE. DOWNLOADED ON MAY 13,2010 AT 11:55:14 UTC FROM IEEE XPLORE. RESTRICTIONS APPLY.
I. I NTRODUCTION
R ECENTLY, various types of implantable medical devices,
640080659.550.png 640080659.661.png 640080659.730.png 640080659.741.png 640080659.001.png 640080659.012.png 640080659.023.png 640080659.034.png 640080659.045.png 640080659.056.png 640080659.067.png 640080659.078.png
78
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 4, NO. 2, APRIL 2010
Fig. 2. Equivalent circuits of the energy transmission system. (a) Series reso-
nant circuit. (b) Parallel resonant circuit.
Fig. 1. Parts of an energy transmission transformer.
TABLE I
M ATERIAL AND D ESIGN P ARAMETERS OF THE T RANSFORMER
which are included, even greater power (20–900 mW) would be
necessary.
III. D ESIGN T HEORY FOR T RANSMITTING
AND R ECEIVING C OILS
To build a small, high-efficiency receiving coil, magnetic
material is desirable on the secondary-coil side. An accurate
equivalent circuit that can model the characteristics of a mag-
netic material is needed in cases where the shape, transmission
frequency, magnetic flux density, number of turns, etc., are
changed.
vice, and core-loss resistances. The circuit equation of Fig. 2(a)
is expressed by (1), shown at the bottom of the page. Then, the
resonant condition is expressed by
A. Equivalent Circuit of Transformer With Core Loss
To transmit a large quantity of power to implantable med-
ical devices, the transformer requires a resonance capacitance
with the inductance of the transmitting and receiving coils. Gen-
erally, the transmitting side (primary side) is a series resonant
circuit, and the receiving side (the secondary side) is a series
resonant circuit or a parallel resonant circuit. Fig. 2(a) shows
the equivalent series resonant circuits for the ETT, and Fig. 2(b)
shows a parallel resonant circuit. In these circuits, , and ,
and , and , and , and , , ,
and and represent, respectively, the angular frequency,
input and output voltages, transmitting and receiving coil resis-
tances, transmitting and receiving coil inductances, resonant ca-
pacitances, equivalent series resistances of the resonant capaci-
tances, mutual inductance, load for the implantable medical de-
(2)
B. Elicitation Process of Core Loss
Core loss
is equal to the sum of hysteresis loss
and
eddy-current loss
(3)
and
are expressed as
(4)
(5)
(1)
AUTHORIZED LICENSED USE LIMITED TO: IEEE XPLORE. DOWNLOADED ON MAY 13,2010 AT 11:55:14 UTC FROM IEEE XPLORE. RESTRICTIONS APPLY.
640080659.089.png 640080659.100.png 640080659.111.png 640080659.122.png 640080659.133.png 640080659.144.png 640080659.155.png 640080659.166.png 640080659.177.png 640080659.188.png 640080659.199.png 640080659.210.png 640080659.221.png 640080659.231.png 640080659.242.png 640080659.253.png 640080659.264.png 640080659.275.png 640080659.286.png 640080659.297.png 640080659.308.png 640080659.319.png 640080659.330.png 640080659.341.png 640080659.352.png 640080659.363.png 640080659.374.png 640080659.385.png 640080659.396.png 640080659.407.png 640080659.418.png 640080659.429.png 640080659.440.png 640080659.451.png 640080659.462.png 640080659.473.png 640080659.484.png 640080659.495.png 640080659.506.png 640080659.517.png 640080659.528.png 640080659.539.png 640080659.551.png 640080659.562.png 640080659.573.png 640080659.584.png 640080659.595.png 640080659.606.png 640080659.617.png 640080659.628.png 640080659.639.png 640080659.650.png 640080659.662.png 640080659.673.png 640080659.684.png 640080659.695.png 640080659.706.png 640080659.717.png 640080659.726.png 640080659.727.png 640080659.728.png 640080659.729.png 640080659.731.png 640080659.732.png 640080659.733.png 640080659.734.png 640080659.735.png 640080659.736.png 640080659.737.png 640080659.738.png 640080659.739.png 640080659.740.png 640080659.742.png 640080659.743.png 640080659.744.png 640080659.745.png 640080659.746.png 640080659.747.png 640080659.748.png 640080659.749.png 640080659.750.png 640080659.751.png 640080659.002.png 640080659.003.png 640080659.004.png 640080659.005.png 640080659.006.png 640080659.007.png 640080659.008.png 640080659.009.png 640080659.010.png 640080659.011.png 640080659.013.png 640080659.014.png 640080659.015.png 640080659.016.png 640080659.017.png 640080659.018.png 640080659.019.png 640080659.020.png 640080659.021.png 640080659.022.png 640080659.024.png 640080659.025.png 640080659.026.png 640080659.027.png 640080659.028.png 640080659.029.png 640080659.030.png 640080659.031.png 640080659.032.png 640080659.033.png 640080659.035.png 640080659.036.png 640080659.037.png 640080659.038.png 640080659.039.png 640080659.040.png 640080659.041.png 640080659.042.png 640080659.043.png 640080659.044.png 640080659.046.png 640080659.047.png 640080659.048.png 640080659.049.png 640080659.050.png 640080659.051.png 640080659.052.png 640080659.053.png 640080659.054.png 640080659.055.png 640080659.057.png 640080659.058.png 640080659.059.png 640080659.060.png 640080659.061.png 640080659.062.png 640080659.063.png 640080659.064.png
SHIBA et al. : DESIGN AND DEVELOPMENT OF LOW-LOSS TRANSFORMER
79
TABLE II
E XPERIMENTAL C ONDITIONS AND M AXIMUM E FFICIENCIES OF T YPE I–VII
where is the transmission frequency and is the maximum
magnetic flux density. It is known that ,
(there is sometimes a case where at a ferrite core),
, and (there is sometimes a case where at a
ferrite core) [32]. is proportional to the differential voltage
between the terminal voltage of the coil and coil resistance
voltage,
, and inversely proportional to [33]
(6)
Fig. 3. Measurement circuit for core-loss resistance.
Therefore,
is defined as follows:
(7)
to when the voltage drop of the secondary coil resistance is
smaller than
where , , and
are constants determined by the magnetic
material.
If
is connected in parallel with
as in Fig. 2, by (7),
(11)
is expressed by
where
,
(there is
(8)
sometimes a case where at a ferrite core).
The material parameters (Table I) , , , , and ( , ,
, , and ) are proposed by the authors and determined by
a one-time measurement. Fig. 3 shows the measurement circuit
for the core-loss resistance. The current is applied to the mag-
netic coil (receiving coil with magnetic material or the trans-
mitting coil with magnetic material); then, the series resistance
and the reactance are measured by using equipment, such as a
power analyzer or a general-purpose oscilloscope. is calcu-
lated from the real part of the impedance by subtracting the coil
resistance. When measuring using Fig. 3, the supply voltage
in Fig. 3 has to be equal to the actual value of the terminal
voltage of the magnetic coil in Fig. 2. For the series resonant
circuit in Fig. 2(a), on the condition that and are con-
stant, the current flowing out of the magnetic coil corresponds
to . Therefore, the supply current in Fig. 3 has to be
equal to .
Likewise, for the parallel resonant circuit in Fig. 2(b), on the
condition that
Using
,
is expressed by
(9)
C. Core-Loss Resistance
In a series resonant circuit, if it is assumed that and are
constant, (8) is transformed as follows because the differential
voltage between the terminal voltage of the receiving coil and
voltage drop of the coil resistance
is proportional to
(10)
where , . In a parallel resonant
circuit, (8) is transformed as follows because
is nearly equal
and
are constant, the terminal voltage of
AUTHORIZED LICENSED USE LIMITED TO: IEEE XPLORE. DOWNLOADED ON MAY 13,2010 AT 11:55:14 UTC FROM IEEE XPLORE. RESTRICTIONS APPLY.
640080659.065.png 640080659.066.png 640080659.068.png 640080659.069.png 640080659.070.png 640080659.071.png 640080659.072.png 640080659.073.png 640080659.074.png 640080659.075.png 640080659.076.png 640080659.077.png 640080659.079.png 640080659.080.png 640080659.081.png 640080659.082.png 640080659.083.png 640080659.084.png 640080659.085.png 640080659.086.png 640080659.087.png 640080659.088.png 640080659.090.png 640080659.091.png 640080659.092.png 640080659.093.png 640080659.094.png 640080659.095.png 640080659.096.png 640080659.097.png 640080659.098.png 640080659.099.png 640080659.101.png 640080659.102.png 640080659.103.png 640080659.104.png 640080659.105.png 640080659.106.png 640080659.107.png 640080659.108.png 640080659.109.png 640080659.110.png 640080659.112.png 640080659.113.png 640080659.114.png 640080659.115.png 640080659.116.png 640080659.117.png 640080659.118.png 640080659.119.png 640080659.120.png 640080659.121.png 640080659.123.png 640080659.124.png 640080659.125.png 640080659.126.png 640080659.127.png 640080659.128.png 640080659.129.png 640080659.130.png 640080659.131.png 640080659.132.png 640080659.134.png 640080659.135.png 640080659.136.png 640080659.137.png 640080659.138.png 640080659.139.png 640080659.140.png 640080659.141.png 640080659.142.png 640080659.143.png 640080659.145.png 640080659.146.png 640080659.147.png 640080659.148.png 640080659.149.png 640080659.150.png 640080659.151.png 640080659.152.png 640080659.153.png 640080659.154.png 640080659.156.png 640080659.157.png 640080659.158.png 640080659.159.png 640080659.160.png 640080659.161.png 640080659.162.png 640080659.163.png 640080659.164.png 640080659.165.png 640080659.167.png 640080659.168.png 640080659.169.png 640080659.170.png 640080659.171.png 640080659.172.png 640080659.173.png 640080659.174.png 640080659.175.png 640080659.176.png 640080659.178.png 640080659.179.png 640080659.180.png 640080659.181.png 640080659.182.png 640080659.183.png 640080659.184.png 640080659.185.png 640080659.186.png 640080659.187.png 640080659.189.png 640080659.190.png 640080659.191.png 640080659.192.png 640080659.193.png 640080659.194.png 640080659.195.png 640080659.196.png 640080659.197.png 640080659.198.png 640080659.200.png 640080659.201.png 640080659.202.png 640080659.203.png 640080659.204.png 640080659.205.png 640080659.206.png 640080659.207.png 640080659.208.png 640080659.209.png 640080659.211.png 640080659.212.png 640080659.213.png 640080659.214.png 640080659.215.png 640080659.216.png 640080659.217.png 640080659.218.png 640080659.219.png 640080659.220.png 640080659.222.png 640080659.223.png 640080659.224.png 640080659.225.png 640080659.226.png 640080659.227.png 640080659.228.png 640080659.229.png
 
80
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 4, NO. 2, APRIL 2010
the magnetic coil corresponds to . Therefore, the supply
voltage in Fig. 3 has to be equal to .
, , , , and in (10), or , , , , and in (11)
are measured as functions of the transmission frequency.
D. Elicitation Processes for Copper Loss and Capacitor Loss
The transmitting coil’s copper loss
(the receiving coil’s
copper loss
) is defined as the product of
and
.
and
are defined as follows because of the skin effect [34]:
(12)
Fig. 4. Arrangement of the two coils.
(13)
where and are the number of wire turns and the radii, re-
spectively. , , and or , , and are the material
parameters (Table I) determined by the wire type. These mate-
rial parameters for a 1-m length of litz-wire are measured with
equipment, such as an LCR meter, as a function of the transmis-
sion frequency.
The losses in the primary-side and secondary-side resonant
capacitors and , respectively, are defined as the prod-
ucts of and , and and . The equivalent series re-
sistances for the resonant capacitors and are the ma-
terial parameters (Table I) determined by the material of the ca-
pacitor. and are measured as functions of the trans-
mission frequency using equipment, such as a general-purpose
LCR meter.
and is the loss in the secondary-side resonance capaci-
tance. In this paper, the ETT is optimally designed by maxi-
mizing the efficiency .
In the design process, first, the material parameters shown in
Table I are measured or specified, and then, the transmission
efficiency is optimized in terms of the design parameters defined
by the user for the given constraints by using (14). Table I shows
a list of candidate design parameters from which the user can
choose the necessary ones. The ETT can be designed on the
basis of the proposed design theory.
IV. D ESIGN E XAMPLE OF THE T RANSMITTING
AND R ECEIVING C OILS
As an example, transmitting and receiving coils that are
wound with the same circumference were designed for the
case where , , and change. In this calculation, the output
voltage was set at 3 V, and and in Fig. 4.
The transmitting coils of types I–V had a diameter of 20
cm and a length of 3 cm [Figs. 1 and 5(a)]. The receiving
coils of types I–V had a diameter of 5 mm and a length
of 2 cm. In addition, the length of the coils
E. Self Inductance and Mutual Inductance
The analytical solution of the self-inductance is used in (1)
and (2). The self-inductance of the transmitting and receiving
coils can be calculated by a simplified numerical analysis [35].
When the calculation is very complex, depending on the layout
of the magnetic material, the self-inductance is calculated based
on a measured result. The self-inductance of a coil with mag-
netic material is defined as multiplication between the ap-
parent relative magnetic permeability and the self-inductance
of the coil without the magnetic material . The mutual induc-
tance between the transmitting and receiving coils can be
calculated by using Neumann’s law when considering the shape
or relative positions of the coils [35]. In order to calculate the
mutual inductance with magnetic material
and
change due
to
and
. The number of wire turns per unit length
and
, the apparent rel-
were set at 75 turns/cm and 7.5 turns/cm, respectively.
The transmitting coils of types VI–VII comprised series-con-
nected double solenoidal coils [Fig. 1 and Fig. 5(b)]. Each
solenoidal coil had a diameter of 30–40 cm (ellipse) and a
length of 6 cm. The distance between the two coils was 20
cm. The receiving coils of types VI–VII had a diameter of
10 mm and a length of 2 cm. and for types VI–VII
were set at 4 turns/cm and 47.5 turns/cm, respectively.
ative magnetic permeability
has to be derived by using the
onetime measured
divided by the calculated
(from Neu-
A. Measurement of the Material Parameters
mann’s law) or the onetime measured
.
First, the material parameters in Table I were measured. The
prototype receiving coils of types I–V (Fig. 5) had 150 turns
of litz-wire (UEW wire, bundles of 15 wires of 0.03 mm)
wound around Material A (EPCOS AG, K1) or Material B (Hi-
tachi Metals Ltd., FINEMET). Material A is a cylindrical ferrite
core. Material B is a fivefold-thinner amorphous magnetic ma-
terial sheet (0.3-mm (thickness) 5) wound around a wooden
stick with a diameter of 2 mm. The prototype receiving coils of
types VI–VII (Fig. 5) had 95 turns of single-wire (UEW wire,
0.2 mm) wound around Material C (a thin amorphous mag-
netic sheet, 0.03 mm in thickness) wound around a wooden stick
F. Energy Transmission Efficiency
The energy transmission efficiency is expressed by
(14)
where
is the output power, which is defined as
divided by
,
is the core loss of the receiving coil,
is the trans-
mitting coil’s copper loss,
is the receiving coil’s copper
loss,
is the loss in the primary-side resonance capacitance,
AUTHORIZED LICENSED USE LIMITED TO: IEEE XPLORE. DOWNLOADED ON MAY 13,2010 AT 11:55:14 UTC FROM IEEE XPLORE. RESTRICTIONS APPLY.
640080659.230.png 640080659.232.png 640080659.233.png 640080659.234.png 640080659.235.png 640080659.236.png 640080659.237.png 640080659.238.png 640080659.239.png 640080659.240.png 640080659.241.png 640080659.243.png 640080659.244.png 640080659.245.png 640080659.246.png 640080659.247.png 640080659.248.png 640080659.249.png 640080659.250.png 640080659.251.png 640080659.252.png 640080659.254.png 640080659.255.png 640080659.256.png 640080659.257.png 640080659.258.png 640080659.259.png 640080659.260.png 640080659.261.png 640080659.262.png 640080659.263.png 640080659.265.png 640080659.266.png 640080659.267.png 640080659.268.png 640080659.269.png 640080659.270.png 640080659.271.png 640080659.272.png 640080659.273.png 640080659.274.png 640080659.276.png 640080659.277.png 640080659.278.png 640080659.279.png 640080659.280.png 640080659.281.png 640080659.282.png 640080659.283.png 640080659.284.png 640080659.285.png 640080659.287.png 640080659.288.png 640080659.289.png 640080659.290.png 640080659.291.png 640080659.292.png 640080659.293.png 640080659.294.png 640080659.295.png 640080659.296.png 640080659.298.png 640080659.299.png 640080659.300.png 640080659.301.png 640080659.302.png 640080659.303.png 640080659.304.png 640080659.305.png 640080659.306.png 640080659.307.png 640080659.309.png 640080659.310.png 640080659.311.png 640080659.312.png 640080659.313.png 640080659.314.png 640080659.315.png 640080659.316.png 640080659.317.png 640080659.318.png 640080659.320.png 640080659.321.png 640080659.322.png 640080659.323.png 640080659.324.png 640080659.325.png 640080659.326.png 640080659.327.png 640080659.328.png 640080659.329.png 640080659.331.png 640080659.332.png 640080659.333.png 640080659.334.png 640080659.335.png 640080659.336.png 640080659.337.png 640080659.338.png 640080659.339.png 640080659.340.png 640080659.342.png 640080659.343.png 640080659.344.png 640080659.345.png 640080659.346.png 640080659.347.png 640080659.348.png 640080659.349.png 640080659.350.png 640080659.351.png 640080659.353.png 640080659.354.png 640080659.355.png 640080659.356.png 640080659.357.png 640080659.358.png 640080659.359.png 640080659.360.png 640080659.361.png 640080659.362.png 640080659.364.png 640080659.365.png 640080659.366.png 640080659.367.png 640080659.368.png 640080659.369.png 640080659.370.png 640080659.371.png 640080659.372.png 640080659.373.png 640080659.375.png 640080659.376.png 640080659.377.png 640080659.378.png 640080659.379.png 640080659.380.png 640080659.381.png 640080659.382.png 640080659.383.png 640080659.384.png 640080659.386.png
SHIBA et al. : DESIGN AND DEVELOPMENT OF LOW-LOSS TRANSFORMER
81
coil and single wires of 0.2 mm for the receiving coil) was
measured by using an LCR meter (HIOKI E. E. Corp., 3532-50).
The material parameters of the winding wire were
,
,
,
,
, and
1.7 (types I–V) and
,
,
,
,
Fig. 5. Transmitting coil and receiving coil of (a) types I–V and (b) types
VI–VII.
, and (types VI–VII).
The material parameters of the equivalent series resistances
of resonant capacitances and of types I–V were set
at 0.25 from the measurement results for the polypropylene
capacitor used (Evox Rifa, PHE450) at a transmission frequency
of 100 kHz. and for types VI–VII were, respec-
tively, set at 0.30 and 0.25 from the measurement results
for the polypropylene capacitor used ( : Evox Rifa, PHE450;
: NISSEI Electric, MPE1600J) at a transmission frequency
of 100 kHz.
The material parameter of the apparent relative magnetic per-
meability of types I–VII was 1.0 because the transmitting
coil had an air core. for Material A was found to be 18.0
from the measurement results H) obtained by
using an LCR meter (HIOKI E. E. Corp., 3532-50), along with
the calculated result H). was calculated by using
the Nagaoka coefficient [35] due to the solenoidal coil.
for Materials B and C was 20.07 and 6.19, respectively. These
values were calculated by one-time measurements.
for Material A in types I–V was calculated by using the
prototype transmitting and receiving coils, as described in Sec-
tion III-E. , , and were set at 10 cm, 0 cm, and 0 rad,
respectively. From the results— H and 98.0
nH— was calculated to be 18.1. for Materials B and C
in types I–VII was calculated by using a one-time measurement
of
and
. The measured value of
for Materials B and
C is 20.2 and 10.7, respectively.
Fig. 6. Measured results versus approximation of the core-loss resistance.
B. Calculations of the Transmission Efficiency, Core Loss, and
Copper Loss of Receiving Coil
The transmission efficiency of the type I (Material A) system
was calculated by using the material parameters in Section IV-A
for a series resonant circuit, 3V, ,
100 mW, and 10 cm. The capsule endoscope must be
of a swallowable size. In addition, the terminal voltage of the
resonant capacitor must have a realistic value that is less than
the maximum voltage [37], [38]. Therefore, the limit is set as
follows:
with a diameter of 2.5 mm. A wooden stick is used only to fasten
the thin amorphous magnetic sheet.
The core-loss resistances for the receiving coils were mea-
sured by using a power analyzer (Yokogawa Electric Corp.,
PZ4000) at transmission frequencies of 10 kHz to 1 MHz. Fig. 6
shows the measured values for Material A and an approxi-
mation fitted to (10) and (11) by the least-squares method (using
Mathematica 6.0). From the measured results, the material pa-
rameters for the core-loss resistance of Material A were
2.3, , , 1.0, 2.0,
0.1, , , 0.6, and
0.7. The material parameters for the core-loss resistances of Ma-
terials B and C are as follows:
mm
(15)
(16)
5.3,
,
The above equation sets the design conditions for the example
capsule endoscope.
Fig. 7 shows an example of the calculated results when
and change. The maximum efficiency was 24.5% at
20.0 mm and 477.1 kHz. The equation for the efficiency
is shown in Appendix B. Fig. 8 shows a partial differential of
the efficiency at 20 mm and 10 mm (example of a
downsized type I system). For
,
1.0,
2.0,
,
1.7,
,
1.0, and
1.0 (Material B);
and
,
6.9,
,
2.0,
1.0,
4.4
,
1.8,
8.6
,
0.6,
0.7 (Material C).
Then, the resistance of the litz-wire (UEW wire; types I–V,
bundles of 360 wires of 0.05 mm for the transmitting coil and
bundles of 15 wires of 0.03 mm for the receiving coil; types
VI–VII, bundles of 798 wires of 0.05 mm for the transmitting
10 mm,
is 0 at
627.5 kHz. For
20 mm,
is 0 at
477.1 kHz. The
transmission frequency at which
becomes 0 is the same
AUTHORIZED LICENSED USE LIMITED TO: IEEE XPLORE. DOWNLOADED ON MAY 13,2010 AT 11:55:14 UTC FROM IEEE XPLORE. RESTRICTIONS APPLY.
640080659.387.png 640080659.388.png 640080659.389.png 640080659.390.png 640080659.391.png 640080659.392.png 640080659.393.png 640080659.394.png 640080659.395.png 640080659.397.png 640080659.398.png 640080659.399.png 640080659.400.png 640080659.401.png 640080659.402.png 640080659.403.png 640080659.404.png 640080659.405.png 640080659.406.png 640080659.408.png 640080659.409.png 640080659.410.png 640080659.411.png 640080659.412.png 640080659.413.png 640080659.414.png 640080659.415.png 640080659.416.png 640080659.417.png 640080659.419.png 640080659.420.png 640080659.421.png 640080659.422.png 640080659.423.png 640080659.424.png 640080659.425.png 640080659.426.png 640080659.427.png 640080659.428.png 640080659.430.png 640080659.431.png 640080659.432.png 640080659.433.png 640080659.434.png 640080659.435.png 640080659.436.png 640080659.437.png 640080659.438.png 640080659.439.png 640080659.441.png 640080659.442.png 640080659.443.png 640080659.444.png 640080659.445.png 640080659.446.png 640080659.447.png 640080659.448.png 640080659.449.png 640080659.450.png 640080659.452.png 640080659.453.png 640080659.454.png 640080659.455.png 640080659.456.png 640080659.457.png 640080659.458.png 640080659.459.png 640080659.460.png 640080659.461.png 640080659.463.png 640080659.464.png 640080659.465.png 640080659.466.png 640080659.467.png 640080659.468.png 640080659.469.png 640080659.470.png 640080659.471.png 640080659.472.png 640080659.474.png 640080659.475.png 640080659.476.png 640080659.477.png 640080659.478.png 640080659.479.png 640080659.480.png 640080659.481.png 640080659.482.png 640080659.483.png 640080659.485.png 640080659.486.png 640080659.487.png 640080659.488.png 640080659.489.png 640080659.490.png 640080659.491.png 640080659.492.png 640080659.493.png 640080659.494.png 640080659.496.png 640080659.497.png 640080659.498.png 640080659.499.png 640080659.500.png 640080659.501.png 640080659.502.png 640080659.503.png 640080659.504.png 640080659.505.png 640080659.507.png 640080659.508.png 640080659.509.png 640080659.510.png 640080659.511.png 640080659.512.png 640080659.513.png 640080659.514.png 640080659.515.png 640080659.516.png 640080659.518.png 640080659.519.png 640080659.520.png 640080659.521.png 640080659.522.png 640080659.523.png 640080659.524.png 640080659.525.png 640080659.526.png 640080659.527.png 640080659.529.png 640080659.530.png 640080659.531.png 640080659.532.png 640080659.533.png 640080659.534.png 640080659.535.png 640080659.536.png 640080659.537.png 640080659.538.png 640080659.540.png 640080659.541.png 640080659.542.png 640080659.543.png 640080659.544.png 640080659.545.png 640080659.546.png 640080659.547.png 640080659.548.png 640080659.549.png 640080659.552.png 640080659.553.png 640080659.554.png 640080659.555.png 640080659.556.png 640080659.557.png 640080659.558.png 640080659.559.png 640080659.560.png 640080659.561.png 640080659.563.png 640080659.564.png 640080659.565.png 640080659.566.png 640080659.567.png 640080659.568.png 640080659.569.png 640080659.570.png 640080659.571.png 640080659.572.png 640080659.574.png 640080659.575.png 640080659.576.png 640080659.577.png 640080659.578.png 640080659.579.png 640080659.580.png 640080659.581.png 640080659.582.png 640080659.583.png 640080659.585.png 640080659.586.png 640080659.587.png 640080659.588.png 640080659.589.png 640080659.590.png 640080659.591.png 640080659.592.png 640080659.593.png 640080659.594.png 640080659.596.png 640080659.597.png 640080659.598.png 640080659.599.png 640080659.600.png 640080659.601.png 640080659.602.png 640080659.603.png 640080659.604.png 640080659.605.png 640080659.607.png 640080659.608.png 640080659.609.png 640080659.610.png 640080659.611.png 640080659.612.png 640080659.613.png 640080659.614.png 640080659.615.png 640080659.616.png 640080659.618.png 640080659.619.png 640080659.620.png 640080659.621.png 640080659.622.png 640080659.623.png 640080659.624.png 640080659.625.png 640080659.626.png 640080659.627.png 640080659.629.png 640080659.630.png 640080659.631.png 640080659.632.png 640080659.633.png 640080659.634.png 640080659.635.png 640080659.636.png 640080659.637.png 640080659.638.png 640080659.640.png 640080659.641.png 640080659.642.png 640080659.643.png 640080659.644.png 640080659.645.png 640080659.646.png 640080659.647.png 640080659.648.png 640080659.649.png 640080659.651.png 640080659.652.png 640080659.653.png 640080659.654.png 640080659.655.png 640080659.656.png 640080659.657.png 640080659.658.png 640080659.659.png 640080659.660.png 640080659.663.png 640080659.664.png 640080659.665.png 640080659.666.png 640080659.667.png 640080659.668.png 640080659.669.png 640080659.670.png 640080659.671.png 640080659.672.png 640080659.674.png 640080659.675.png 640080659.676.png 640080659.677.png 640080659.678.png 640080659.679.png 640080659.680.png 640080659.681.png 640080659.682.png 640080659.683.png 640080659.685.png 640080659.686.png 640080659.687.png 640080659.688.png 640080659.689.png 640080659.690.png 640080659.691.png 640080659.692.png 640080659.693.png 640080659.694.png 640080659.696.png 640080659.697.png 640080659.698.png 640080659.699.png 640080659.700.png 640080659.701.png 640080659.702.png 640080659.703.png 640080659.704.png 640080659.705.png 640080659.707.png 640080659.708.png 640080659.709.png 640080659.710.png 640080659.711.png 640080659.712.png 640080659.713.png 640080659.714.png 640080659.715.png 640080659.716.png 640080659.718.png 640080659.719.png 640080659.720.png 640080659.721.png 640080659.722.png 640080659.723.png 640080659.724.png 640080659.725.png
Zgłoś jeśli naruszono regulamin