Measure_Theory-Liskevich.pdf
(
234 KB
)
Pobierz
390103120 UNPDF
MeasureTheory
V.Liskevich
1998
1Introduction
Wealwaysdenoteby
X
our
universe
,i.e.allthesetsweshallconsideraresubsetsof
X
.
Recallsomestandardnotation.2
X
everywheredenotesthesetofallsubsetsofagiven
set
X
.If
A\B
=?thenweoftenwrite
AtB
ratherthan
A[B
,tounderlinethe
disjointness.Thecomplement(in
X
)ofaset
A
isdenotedby
A
c
.By
A4B
the
symmetric
di®erence
of
A
and
B
isdenoted,i.e.
A4B
=(
A\B
)
[
(
B\A
).Letters
i,j,k
always
denotepositiveintegers.Thesign¹isusedforrestrictionofafunction(operatoretc.)to
asubset(subspace).
1.1TheRiemannintegral
RecallhowtoconstructtheRiemannianintegral.Let
f
:[
a,b
]
!
R
.
Considerapartition
¼
of[
a,b
]:
a
=
x
0
<x
1
<x
2
<...<x
n−
1
<x
n
=
b
andset¢
x
k
=
x
k
+1
−x
k
,|¼|
=max
{
¢
x
k
:
k
=0
,
1
,...,n−
1
}
,
m
k
=inf
{f
(
x
):
x2
[
x
k
,x
k
+1
]
},M
k
=sup
{f
(
x
):
x2
[
x
k
,x
k
+1
]
}.
DefinetheupperandlowerRiemann—
Darbouxsums
n−
1
X
n−
1
X
s
(
f,¼
)=
m
k
¢
x
k
,
¯
s
(
f,¼
)=
M
k
¢
x
k
.
k
=0
k
=0
Onecanshow(theDarbouxtheorem)thatthefollowinglimitsexist
Z
b
|¼|!
0
s
(
f,¼
)=sup
¼
s
(
f,¼
)=
fdx
a
Z
b
|¼|!
0
¯
s
(
f,¼
)=inf
¼
¯
s
(
f,¼
)=
fdx.
a
1
lim
lim
Clearly,
Z
b
Z
b
s
(
f,¼
)
·
fdx·
fdx·
¯
s
(
f,¼
)
a
a
foranypartition
¼
.
Thefunction
f
issaidtobeRiemannintegrableon[
a,b
]iftheupperandlowerintegrals
areequal.ThecommonvalueiscalledRiemannintegralof
f
on[
a,b
].
Thefunctionscannothavealargesetofpointsofdiscontinuity.Morepresicelythis
willbestatedfurther.
1.2TheLebesgueintegral
Itallowstointegratefunctionsfromamuchmoregeneralclass.First,consideravery
usefulexample.For
f,g2C
[
a,b
],twocontinuousfunctionsonthesegment[
a,b
]=
{x2
R:
a
6
x
6
b}
put
½
1
(
f,g
)=max
a
6
x
6
b
|f
(
x
)
−g
(
x
)
|,
Z
b
½
2
(
f,g
)=
|f
(
x
)
−g
(
x
)
|
d
x.
a
Then(
C
[
a,b
]
,½
1
)isacompletemetricspace,when(
C
[
a,b
]
,½
2
)isnot.Toprovethelatter
statement,considerafamilyoffunctions
{'
n
}
1
n
=1
asdrawnonFig.1.ThisisaCauchy
sequencewithrespectto
½
2
.However,thelimitdoesnotbelongto
C
[
a,b
].
2
6
¯¯ L
¯
L
¯
L
¯
L
¯
L
¯
L
¯
L
¯
L
¯
LL
-
−
1
2
−
1
2
+
1
n
2
−
1
n
1
2
Figure1:Thefunction
'
n
.
2SystemsofSets
Definition2.1Aringofsets
isanon-emptysubsetin
2
X
whichisclosedwithrespect
totheoperations[and\.
Proposition.LetKbearingofsets.Then?
2
K.
Proof.
SinceK
6
=?,thereexists
A2
K.SinceKcontainsthedi®erenceofeverytwo
itselements,onehas
A\A
=?
2
K.¥
Examples.
1.ThetwoextremecasesareK=
{
?
}
andK=2
X
.
2.Let
X
=RanddenotebyKallfiniteunionsofsemi-segments[
a,b
).
Definition2.2Asemi-ring
isacollectionofsets
P
½
2
X
withthefollowingproperties:
1.IfA,B2
P
thenA\B2
P
;
3
1
2.ForeveryA,B2
P
thereexistsafinitedisjointcollection
(
C
j
)
j
=1
,
2
,...,nof
sets(i.e.C
i
\C
j
=?
ifi6
=
j)suchthat
A\B
=
n
G
C
j
.
j
=1
Example.Let
X
=R,thenthesetofallsemi-segments,[
a,b
),formsasemi-ring.
Definition2.3Analgebra(ofsets)
isaringofsetscontainingX2
2
X
.
Examples.
1.
{
?
,X}
and2
X
arethetwoextremecases(notethattheyaredi®erentfromthe
correspondingcasesforringsofsets).
2.Let
X
=[
a,b
)beafixedintervalonR.Thenthesystemoffiniteunionsofsubin-
tervals[
®,¯
)
½
[
a,b
)formsanalgebra.
3.Thesystemofallboundedsubsetsoftherealaxisisaring(
notanalgebra
).
Remark.Aisalgebraif(i)
A,B2
A=
)A[B2
A,(ii)
A2
A=
)A
c
2
A.
Indeed,1)
A\B
=(
A
c
[B
c
)
c
;2)
A\B
=
A\B
c
.
Definition2.4A
¾
-ring(a
¾
-algebra)
isaring(analgebra)ofsetswhichisclosedwith
respecttoallcountableunions.
Definition2.5Aring(analgebra,a
¾
-algebra)ofsets
,
K(U)
generatedbyacollection
ofsets
U
½
2
X
istheminimalring(algebra,¾-algebra)ofsetscontaining
U
.
Inotherwords,itistheintersectionofallrings(algebras,
¾
-algebras)ofsetscontaining
U.
4
3Measures
Let
X
beaset,Aanalgebraon
X
.
Definition3.1
Afunctionµ:
A
−!
R
+
[{1}iscalleda
measure
if
1.µ
(
A
)>0
foranyA2
A
andµ
(?)=0
;
2.if
(
A
i
)
i
>1
isadisjointfamilyofsetsin
A
(A
i
\A
j
=?
foranyi6
=
j)suchthat
1
G
1
X
µ
(
A
i
)=
µ
(
A
i
)
.
i
=1
i
=1
Thelatterimportantproperty,iscalled
countableadditivity
or
¾-additivity
ofthemeasure
µ
.
Letusstatenowsomeelementarypropertiesofameasure.Belowtilltheendofthis
sectionAisanalgebraofsetsand
µ
isameasureonit.
1.(Monotonicityof
µ
)If
A,B2
Aand
B½A
then
µ
(
B
)6
µ
(
A
).
Proof.A
=(
A\B
)
tB
impliesthat
µ
(
A
)=
µ
(
A\B
)+
µ
(
B
)
.
Since
µ
(
A\B
)
¸
0itfollowsthat
µ
(
A
)
¸µ
(
B
).
2.(Subtractivityof
µ
).If
A,B2
Aand
B½A
and
µ
(
B
)
<1
then
µ
(
A\B
)=
µ
(
A
)
−µ
(
B
).
Proof.
In1)weprovedthat
µ
(
A
)=
µ
(
A\B
)+
µ
(
B
)
.
If
µ
(
B
)
<1
then
µ
(
A
)
−µ
(
B
)=
µ
(
A\B
)
.
3.If
A,B2
Aand
µ
(
A\B
)
<1
then
µ
(
A[B
)=
µ
(
A
)+
µ
(
B
)
−µ
(
A\B
)
.
Proof.A\B½A,A\B½B
,therefore
A[B
=(
A\
(
A\B
))
tB.
Since
µ
(
A\B
)
<1
,onehas
µ
(
A[B
)=(
µ
(
A
)
−µ
(
A\B
))+
µ
(
B
)
.
5
F
1
i
=1
A
i
2
A
,then
Plik z chomika:
Kuya
Inne pliki z tego folderu:
A_Brief_Introduction_to_Measure_Theory_and_Integration-Richard_Bass.pdf
(194 KB)
Distributions-Andras_Vasy.pdf
(76 KB)
Distributions_Generalized_Functions-Ivan_Wilde.pdf
(430 KB)
Introduction_to_Generalized_Functions_with_Applications_in_Aerodynamics_and_Aeroacoustics-Farasat.pdf
(2310 KB)
Introduction_to_Geometric_Measure_Theory-Urs_Lang.pdf
(297 KB)
Inne foldery tego chomika:
algebra
analysis
calculus
complex
computation
Zgłoś jeśli
naruszono regulamin