chemia- substytucja.doc

(290 KB) Pobierz
5)

5). Reaktywność chemiczna arenów:

a). Reakcje substytucji elektrofilowej

Reakcje substytucji elektrofilowej są charakterystyczne dla związków aromatycznych. Równanie ogólne tych reakcji można przedstawić w postaci:

                                                  

   Poniżej podam kilka przykładów reakcji tego typu, posługując się benzenem jako substratem.

l. Nitrowanie arenów przeprowadza się stężonym kwasem azotowym(V), często w obecności stężonego kwasu siarkowego(VI),

np.:                                 

2. Fluorowcowanie przeprowadza się wobec katalizatorów typu kwasów Lewisa, czyli związków posiadających lukę elektronową (np. A1C13, FeCl3 itp.). Z benzenu otrzymujemy w ten sposób chlorobenzen:

                                       

Fluorowcowanie przebiega według powyższej reakcji jedynie w przypadku użycia chloru i bromu. Fluor jest zbyt reaktywny i zastosowanie go prowadzi do wielu produktów reakcji. Jod, przeciwnie, jest mało reaktywny i jodowanie benzenu należy przeprowadzać w obecności kwasu azotowego(V). Halogenowe pochodne arenów można również otrzymać drogą okrężną - z amin, poprzez sole diazoniowe, w reakcji Sandmeyera .
3. Sulfonowanie przeprowadza się za pomocą stężonego kwasu siarkowego(VI) lub tzw. dymiącego kwasu siarkowego(VI) (oleum - roztwór SO3 w H2SO4). W reakcji tej atom wodoru zostaje zastąpiony grupą sulfonową -SO3H  i powstają kwasy arylosulfonowe. Sulfonowanie jest reakcją odwracalną, gdyż kwasy arylosulfonowe ulegają hydrolizie do macierzystych arenów:

                                      

4. Reakcje Friedel-Craftsa alkilowania i acylowania związków aromatycznych są również reakcjami substytucji elektrofilowej. O reakcjach alkilowania wspominałem już, omawiając otrzymywanie węglowodorów aromatycznych. W reakcjach acylowania na węglowodór aromatyczny działa się chlorkami lub bromkami kwasowymi (acylowymi) R-COX lub Ar-COX w obecności chlorku glinu lub innego katalizatora typu kwasu Lewisa. W wyniku reakcji acylowania powstają odpowiednie ketony, np.:

                                      

W przypadku innych węglowodorów aromatycznych, posiadających w pierścieniu nierównocenne atomy węgla, w zależności od warunków reakcji mogą powstawać oddzielnie izomeryczne produkty substytucji elektrofilowej lub ich mieszaniny. Na przykład naftalen sulfonowany w temperaturze 80°C daje jako główny produkt kwas 1-naftalenosulfonowy, podczas gdy sulfonowanie w 160°C prowadzi przede wszystkim do powstania kwasu 2-naftalenosulfonowego.


6). Mechanizm substytucji elektrofilowej w benzenie:

Reakcja substytucji elektrofilowej wg teorii elektronowej zachodzi w ten sposób, że w pierwszym etapie reakcji tworzy się przejściowy związek, powstający przez przyłączenie atakującego reagenta kationoidowego do cząsteczki benzenu, kosztem jednej z par elektronowych układu aromatycznego. Taki przejściowy związek zwany jest kompleksem s (sigma) i ma charakter kationu. Kation taki może być stabilizowany przez rezonans, ponieważ możemy napisać dla niego różne struktury kanoniczne odpowiadające różnym rozmieszczeniom ładunku dodatniego w pierścieniu. Kompleks s wykazuje dążność do odtworzenia układu aromatycznego w pierścieniu, co połączone będzie z utratą energii, związaną z dużą rezonansową stabilizacją układu aromatycznego. Ta tendencja jest siłą napędową drugiego etapu reakcji, w którym następuje odszczepienie atomu wodoru i ponowne utworzenie sekstetu elektronowego w pierścieniu odpowiedniej pochodnej. Etap ten jest na ogół szybszy od tworzenia kompleksu. Mechanizm ten ilustruje równanie:

             

Poniżej przedstawiono przykładowe równania reakcji prowadzących do powstania odpowiednich odczynników kationoidowych:

                            
Za odczynnik sulfonujący uznawany jest również trójtlenek siarki, w którym kationoidowym centrum jest atom siarki.

                             

Pamiętajmy, że w karbokationach alkilowych może zachodzić izomeryzacja!

                            

Po wprowadzeniu jednego podstawnika utworzona monopochodna benzenu może ulegać dalszej substytucji i w wyniku reakcji może powstać skomplikowana mieszanina produktów. Dlatego ważne jest dokładne przestrzeganie odpowiednich warunków reakcji, które zazwyczaj faworyzują tworzenie się głównego produktu reakcji w znacznej przewadze. Inne areny reagują podobnie, ale przy nierównocennych atomach węgla w pierścieniach lub jeżeli z pierścieniem związany jest już jakiś podstawnik, należy w analizie mechanizmów takich reakcji uwzględniać możliwość zróżnicowanego rozmieszczenia gęstości elektronowej w cząsteczce substratu.


 

8). Reakcje addycji:

Wspomnieliśmy już poprzednio, że układ aromatyczny trudno ulega reakcjom addycji, jednak stosując odpowiednie warunki, udaje się przeprowadzić reakcje tego typu. Między innymi benzen można uwodornić do cykloheksanu, stosując wysoką temperaturę (150°C), podwyższone ciśnienie (l MPa) oraz katalizator niklowy. Reakcji tej na ogół nie udaje się zatrzymać na etapie redukcji jednego wiązania (przyłączenia dwóch atomów wodoru), gdyż cykliczne układy nienasycone redukują się łatwiej niż związki aromatyczne. Redukcja pierścienia benzenowego sodem, litem lub potasem prowadzona w ciekłym amoniaku (tzw. redukcja Bircha) jest addycją 1,4 i daje w wyniku l ,4-cykloheksadien bez sprzężonego układu wiązań podwójnych.
Naftalen ulega uwodornieniu nieco łatwiej niż benzen. Pod działaniem sodu i etanolu tworzy się l ,4-dihydronaftalen (addycja 1,4). Produktami katalitycznego uwodornienia naftalenu są: tetralina (1,2,3,4-tetrahydronaftalen) i dekalina (perhydronaftalen).

                                         
Warto zwrócić uwagę na przestrzenną strukturę tego ostatniego związku, zbudowanego z dwóch skondensowanych pierścieni cykloheksanu. Ponieważ trwalszą konformacją cykloheksanu jest odmiana krzesłowa, można przypuszczać, że dekalina będzie zbudowana z dwóch pierścieni o takiej właśnie budowie przestrzennej. Jak łatwo dostrzec to na modelach przestrzennych, istnieją dwie możliwości wzajemnego połączenia takich pierścieni, przedstawione wzorami perspektywicznymi
.
                                          

W odmianie cis połączenie pierścieni powstaje przez wiązanie aksjalne i wiązanie ekwatorialne, podczas gdy w odmianie trans pierścienie łączą się dwoma wiązaniami ekwatorialnymi. Atomy wodoru w cis-dekalinie znajdują się po tej samej stronie płaszczyzny pierścieni, natomiast w odmianie trans znajdują się po przeciwnych jej stronach. Posługując się wzorami płaskimi, zaznacza się to często, używając kresek ciągłych lub klinowych oraz kresek przerywanych, obrazujących odpowiednio wiązania skierowane ponad (przed) i pod (za) płaszczyznę rysunku, jak to pokazano poniżej:

                                         ...

Zgłoś jeśli naruszono regulamin