J-couplings..PDF
(
1652 KB
)
Pobierz
350251673 UNPDF
J-couplings.
Measurement and Usage in Structure
Determination
Dr. Geerten W. Vuister
Department of Biophysical Chemistry
Radboud University Nijmegen
Toernooiveld 1
6525 ED Nijmegen, The Netherlands
http://www.nmr.ru.nl
Largely based upon:
G.W. Vuister et al., “Pulse Sequences for Measuring Coupling Constants” in Biological
Magnetic Resonance, Vol. 16: Modern Techniques in Protein NMR, edited by Krishna and
Berliner, Kluwer Academic/Plenum Publishers, 1998.
Updated: August 2005
Contents
1.1 Motivations for measuring J-couplings .................................................................................. 5
2. IN-PHASE/ANTIPHASE METHODS (IPAP)................................................................... 6
3. THE E.COSY METHODS................................................................................................ 8
3.1. Explanation of the E.COSY principle. .................................................................................. 8
3.1. Explanation of the E.COSY principle. .................................................................................. 9
3.2 E.COSY
1
J and
2
J example ................................................................................................... 12
3.3 Practical outline E.COSY ..................................................................................................... 13
4. THE QUANTITATIVE J-CORRELATION METHODS. ................................................. 14
4.1. Spin-echo based quantitative J-correlation schemes. ......................................................... 14
4.1. Spin-echo based quantitative J-correlation schemes. ......................................................... 15
4.2. HMQC-based quantitative J-correlation schemes. ............................................................. 16
4.3. COSY-based quantitative J-correlation schemes................................................................ 18
4.4 Practical outline QJ............................................................................................................... 20
5. COMPARING THE MERITS OF E.COSY AND QJ-METHODS ................................... 21
6. THE BACKBONE ANGLE
φ
......................................................................................... 22
6.1. J-Couplings related to
φ
....................................................................................................... 22
7. THE BACKBONE ANGLE
ψ
........................................................................................ 27
8. THE SIDECHAIN ANGLES
χ
1
AND
χ
2
......................................................................... 29
2
9. EXTRACTING THE INFORMATION ............................................................................ 32
9.1. Parametrization of Karplus curves. .................................................................................... 32
9.1. Parametrization of Karplus curves. .................................................................................... 33
9.2. Analysis of J-couplings in Proteins. ..................................................................................... 34
10. CONCLUSIONS.......................................................................................................... 37
11. PRACTICAL OUTLINE............................................................................................... 37
Stage 1: Extracting initial information....................................................................................... 37
Stage 2: Extracting additional information for complete analysis............................................ 37
12. REFERENCES RELATED TO MEASUREMENT OF RDCS...................................... 38
13. REFERENCES............................................................................................................ 40
3
1. Introduction
It has been recognized since the early days of NMR that the J-coupling constants contain
very useful information regarding molecular conformation (Karplus, 1959, 1963; Bystrov, 1976).
For small (bio)molecules the magnitude of the J-coupling constants can often be measured directly
from the splitting of the resonances of interest. However, the accurate measurement of the
magnitude of the J-coupling constants has been problematic for larger biomolecules in which the
measurements of in-phase or antiphase splittings failed.
With the recent advent of isotope labeling techniques in proteins, RNA, and DNA molecules
interest in the measurement of J-couplings has again surged. The usage of isotope labels has
prompted the development of a series of experiments aimed at measuring a large array of both
homo- and heteronuclear coupling constants. As a result of these developments, valuable structural
information can now be obtained in a relatively straightforward way for medium-sized
biomolecules (see Vuister et al., 1998 and Griesinger et al, 1998 for reviews). Moreover, the newly
measured J-coupling data have allowed the reparametrization of the Karplus curves describing the
dependencies of the
3
J-values upon the intervening torsion angles (Vuister and Bax, 1993a, Wang
and Bax, 1995, 1996; Hu and Bax, 1996; Hu and Bax, 1997b). It is to be expected that the newly
obtained curves will be of higher accuracy compared to those derived solely on the basis of small
model compounds, in particular for the range of dihedral angles which were actually used in the
parametrization.
These new techniques can be subdivided on the basis of the underlying principle for
measuring the J-coupling. In-phase-anti-phase (IPAP) methods are well-suited for the measurement
of large- and rather uniform J-couplings (discussed in section 2). In the so-called E.COSY methods
(Griesinger et al., 1985,1986,1987) (discussed in section 3) two spins are correlated without
disturbing the energy levels of a third spin, which is J-coupled to both other spins. The resulting
E.COSY pattern then allows the measurement of a small J-coupling, provided that the second J-
coupling is large enough to allow separation of the multiplet components. E.COSY methods have
now been used to measure a large variety of
2
J and
3
J-coupling constants (Montelione et al., 1989,
Wider et al., 1989; Sörensen, 1990; Delaglio et al., 1991; Gemmecker and Fesik, 1991; Schmieder
et al., 1991; Seip et al., 1992; Vuister and Bax, 1992; Emerson and Montelione, 1992; Eggenberger
4
et al., 1992; Griesinger and Eggenberger, 1992; Madsen et al., 1993; Weisemann et al., 1994a;
Wang and Bax, 1995, 1996; Löhr and Rüterjans, 1995, 1997, 1999; Löhr et al., 1997).
A second class of experiments (discussed in section 4) aims to quantify the signal
modulation or attenuation resulting from the active coupling and is referred to as quantitative J-
correlation experiments (QJ) (Archer et al., 1991; Grzesiek et al., 1992; Blake et al., 1992; Billeter
et al., 1992; Vuister and Bax, 1993a,b; Vuister et al., 1993a,b; Bax et al., 1994; Vuister et al., 1994;
Kuboniwa et al., 1994; Grzesiek et al., 1995; Hu and Bax, 1996; 1997ab; Hu et al., 1997; Hennig et
al., 1997).
Alternative methods for measuring J-couplings include the so-called P-FIDS or C’-FIDS
methods (Schwalbe et al., 1994; Rexroth et al., 1995a) and the ZQ/DQ methods (Rexroth et al.,
1995b; Otting, 1997).
1.1 Motivations for measuring J-couplings
There can be several reasons for measuring J-couplings:
•
J-couplings can provide structural information
•
Data can provide stereo-specific assignments.
•
Data can provide dynamic information.
•
Data can be used for structure validation.
•
The same techniques are used for measurements of residual dipolar couplings and hydrogen-
bond J couplings (
h
J
).
5
Plik z chomika:
m-arcin92
Inne pliki z tego folderu:
ss nmr of polymers.PDF
(2075 KB)
Solid State NMR experimental.PDF
(884 KB)
introduction to solid state NMR.PDF
(1012 KB)
NMR interactions.PDF
(1051 KB)
Heteronuclear Correlation Spectroscopy.PDF
(329 KB)
Inne foldery tego chomika:
Pliki dostępne do 01.06.2025
Pliki dostępne do 08.07.2024
Pliki dostępne do 19.01.2025
Pliki dostępne do 21.01.2024
■ Matura Biologia
Zgłoś jeśli
naruszono regulamin