20504di.pdf

(178 KB) Pobierz
659317884 UNPDF
design
ideas
Edited by Bill Travis
The best of
design ideas
Double DAC rate by using mixers as switches
Randall Carver, Analog Devices, Greensboro, NC
sample rate of a DAC by interleaving
two DACs into a single unit. Updat-
ing each DAC on an alternating basis and
switching to the appropriate output dou-
ble the effective throughput of the over-
all system. It is essential to overall per-
formance that you use a high-quality,
high-speed switch in the multiplexing of
the DACs’ outputs. The current-mode
DACs in this Design Idea allow for cur-
rent-steering implementation of the out-
put switch. Current steering uses two dif-
ferential-transistor pairs cross-coupled in
the form of a four-quadrant multiplier
( Figure 1 ). In this topology, the satura-
tion voltages of the transistors are mini-
mal, voltage swings are small, and switch-
ing speeds are high.
The 2.5-GHz AD8343 mixer contains
a complete four-quadrant-multiplier
structure that you can use as a high-
speed, current-mode switch. The bias
Double DAC rate by using mixers
as switches ...................................................... 69
DDS IC plus frequency-to-voltage converter
make low-cost DAC........................................ 70
Low-noise ac amplifier has digital control
of gain and bandwidth ................................ 72
1-kV power supply produces
a continuous arc ............................................ 76
OUTP
OUTN
SEL
SEL
SEL
SEL
Publish your Design Idea in EDN . See the
What’s Up section at www.edn.com.
INP
INN
circuitry internal to the AD8343 sets the
dc voltage at the emitters to approxi-
mately 1.2V, which in turn sets the com-
pliance voltage necessary at the DAC
You can use cross-coupled
differential transistor pairs as
current-mode switches.
5V
Figure 2
50
DATA BUS A
D0-D9
IOUT
IOUT
INP
INN
OUTP
IC 1
AD9731
10-BIT,
170M-SAMPLE/SEC
DAC
IC 5
AD8343
2.5-GHz MIXER
IC 3
90LV027A
LOP
CLK
10
OUTN
REF_IN
CA_OUT
CA_IN
REF_OUT
CL K
CLK
LON
50
RSET
1.96k
5V
OUT
50
DATA BUS B
D0-D9
IOUT
IOUT
INP
INN
OUTP
IC 2
AD9731
10-BIT,
170M-SAMPLE/SEC
DAC
IC 4
90LV027A
IC 6
AD8343
2.5-GHz MIXER
LOP
CLK
10
OUTN
REF_IN
CA_OUT
CA_IN
REF_OUT
C L K
CLK
LON
50
RSET
1.96k
“Ping-ponging” the outputs of two DACs effectively doubles the throughput rate.
www.edn.com
FEBRUARY 5, 2004 | EDN 69
Check it out at:
www.edn.com
Y OU CAN EFFECTIVELY double the
Figure 1
659317884.188.png 659317884.199.png 659317884.210.png 659317884.221.png 659317884.001.png 659317884.012.png 659317884.023.png 659317884.034.png 659317884.045.png 659317884.056.png 659317884.067.png 659317884.078.png 659317884.089.png 659317884.100.png 659317884.111.png 659317884.122.png 659317884.133.png 659317884.144.png 659317884.153.png 659317884.154.png 659317884.155.png 659317884.156.png 659317884.157.png 659317884.158.png 659317884.159.png 659317884.160.png 659317884.161.png 659317884.162.png
design
ideas
outputs. With only a minimal drive sig-
nal at the base connections, the emitters
appear as a virtual ac ground. The re-
duced voltage swing at these nodes min-
imizes the effect of any parasitic capac-
itances. This Design Idea uses two
AD8343 mixers as high-speed switches
to multiplex the differential output cur-
rents derived from two AD9731 DACs
( Figure 2 ). On the output side of the
mixers, the termination resistors allow
for a dc path to the supply, provide for
the current-to-voltage conversion, and
. This configura-
tion allows the circuit to drive a re-
motely located, 100
, differential load
coaxial cables. The low-lev-
el clock signals at the LO inputs come
from high-speed LVDS buffers termi-
nated in resistances of 10
. The ap-
3.5-mA p-p drivers pro-
duce roughly 70-mV p-p drive at
the LO inputs. Figure 3 shows
that the circuit provides output rise and
fall times faster than 200 psec.
Figure 3
The circuit in Figure 2 produces outputs with
less-than-200-psec rise and fall times.
DDS IC plus frequency-to-voltage converter
make low-cost DAC
Noel McNamara, Analog Devices, Limerick, Ireland
P RECISION DACS are es-
V OUT
sential in many con-
sumer, industrial, and
military applications, but
high-resolution DACs can
be costly. Frequency-to-
voltage converters have
good nonlinearity specifi-
cations—typically, 0.002%
for the AD650—and are in-
herently monotonic. This
Design Idea shows how you
can use a frequency-to-
voltage converter and a
DDS (direct-digital-syn-
thesizer) chip for precise
digital-to-analog conver-
sion. The DDS chip gener-
ates a precision frequency
proportional to its digital
input. This frequency
serves as the input to a volt-
age-to-frequency converter,
thereby generating an 18-
bit analog voltage pro-
portional to the origi-
nal digital input. Figure 1
shows how the AD650 is
configured for frequency-to-voltage con-
version. With R 1
R 3
1
14
INPUT
OFFSET
TRIM
C INT
+
20k
OP
AMP
2
13
R 1
250k
_
3
12
1 5 V
0.1
F
S 1
4
11
AD650
ANALOG
GROUND
V S
1 mA
15V
5
0.6V
10
V S
500
560 pF
0.1 F
f IN
OUT
IN
2k
500
FREQUENCY
ONE
SHOT
6
9
5V
OUT
C OS
1N914
COMPARATOR
7
8
Figure 1
This circuit shows the AD650 in a frequency-to-voltage configuration.
R 3
20 k
and
Resolution of 18 bits requires a pro-
grammable clock source with a frequen-
cy resolution of 0.38 Hz (100 kHz/
262,144). The AD9833 low-power DDS
IC with on-chip 10-bit DAC is ideal for
this task, because setting the clock fre-
quency requires no external components.
The device contains a 28-bit accumula-
tor, which allows it to generate signals
with 0.1-Hz resolution when you operate
it with a 25-MHz master clock. Figure 2
shows a block diagram of the AD9833
DDS chip. Figure 3 shows the complete
system. The most significant bit of the
on-chip DAC switches to the V OUT pin of
the AD9833, thus generating the 0V-to-
620 pF, a full-scale input frequency
of 100 kHz produces a full-scale output
voltage of 10V. (See Analog Devices
(www.analog.com) application note AN-
279 for more details on using the AD650
as a frequency-to-voltage converter.)
70 EDN | FEBRUARY 5, 2004
www.edn.com
present a single-ended back-termina-
tion impedance of 50
via two 50
proximate
C OS
659317884.163.png 659317884.164.png 659317884.165.png 659317884.166.png 659317884.167.png 659317884.168.png 659317884.169.png 659317884.170.png 659317884.171.png 659317884.172.png 659317884.173.png 659317884.174.png 659317884.175.png 659317884.176.png 659317884.177.png 659317884.178.png 659317884.179.png 659317884.180.png 659317884.181.png 659317884.182.png 659317884.183.png 659317884.184.png
 
design
ideas
AG N D
DG N D
V D D
CAP/ 2 .5V
MCLK
ONBOARD
REFERENCE
REGULATOR
FULL-SCALE
CONTROL
AVDD/
DVDD
COMPARATOR
2.5V
MULTIPLEXER
FREQUENCY0 REGISTER
28-BIT PHASE
ACCUMULATOR
12
SIN
ROM
10-BIT
DAC
FREQUENCY1 REGISTER
MSB
MULTIPLEXER
PHASE0 REG
PHASE1 REG
V OUT
DIVIDE
BY 2
MULTIPLEXER
Figure 2
200
CONTROL REGISTER
MULTIPLEXER
SERIAL INTERFACE
AND CONTROL LOGIC
AD9833
FSYNC SCLK SDATA
This DDS chip generates signals with 0.1-Hz resolution from a 25-MHz clock.
V DD square wave that serves as the clock
input to the AD650 voltage-to-frequen-
cy converter. Writing to frequency-con-
trol registers via a simple three-wire in-
terface sets the clock frequency,
thus programming the voltage out-
put.
FSYNC
SCLK
SDATA
MCLK
V OUT f IN
AD650
VOLTAGE-
TO-FREQUENCY
CONVERTER
V OUT =0 TO 10V,
18-BIT RESOLUTION
MICROCONTROLLER
AD9833
DDS
Figure 3
This DAC system delivers 0 to 10V output with 18-bit resolution.
Low-noise ac amplifier has
digital control of gain and bandwidth
Philip Karantzalis, Linear Technology, Milpitas, CA
gain amplifier serves at the input to
increase the SNR. The input signal
level determines the input-stage gain;
low-level signals require the highest gain.
It is also standard practice in low-noise
analog-signal processing to
make the circuit’s bandwidth
as narrow as possible to pass only the
useful input-signal spectrum. The opti-
mum combination of an amplifier’s gain
and bandwidth is the goal of a low-noise
design. In a data-acquisition system, dig-
ital control of gain and bandwidth pro-
vides dynamic adjustment to variations
in input-signal level and spectrum. Fig-
ure 1 shows a simplified circuit for an ac
R 2
C 2
V I N
C 1
R 1
_
_
_
+
+
_
V O UT
+
Figure 1
+
GAIN-
CONTROL PGA
(GAIN A)
BANDWIDTH-
CONTROL PGA
(GAIN B)
GAIN=–1
NOTES:
V OUT =(GAIN A)V IN .
1
2 R 1 C 1
_
_
1
.
BANDWIDTH
R 2 C 2
2
(GAIN B)
This ac-amplifier configuration offers both gain and bandwidth control.
72 EDN | FEBRUARY 5, 2004
www.edn.com
I N LOW-NOISE ANALOG circuits, a high-
659317884.185.png 659317884.186.png 659317884.187.png 659317884.189.png 659317884.190.png 659317884.191.png 659317884.192.png 659317884.193.png 659317884.194.png 659317884.195.png 659317884.196.png 659317884.197.png 659317884.198.png 659317884.200.png 659317884.201.png 659317884.202.png 659317884.203.png 659317884.204.png 659317884.205.png 659317884.206.png 659317884.207.png 659317884.208.png 659317884.209.png 659317884.211.png 659317884.212.png 659317884.213.png 659317884.214.png 659317884.215.png 659317884.216.png 659317884.217.png 659317884.218.png 659317884.219.png 659317884.220.png 659317884.222.png 659317884.223.png 659317884.224.png 659317884.225.png 659317884.226.png 659317884.227.png 659317884.228.png 659317884.229.png 659317884.230.png 659317884.231.png 659317884.002.png 659317884.003.png 659317884.004.png 659317884.005.png 659317884.006.png 659317884.007.png 659317884.008.png 659317884.009.png 659317884.010.png 659317884.011.png 659317884.013.png 659317884.014.png 659317884.015.png 659317884.016.png 659317884.017.png
design
ideas
C 1
R 1 R 2
15.8k 15.8k
V OUT
10
F
Figure 2
0.1
V
0.1
V
0.1
F
F
F
C 2
1
1
8
8
8
1
1
F
R 4
2
IC 1
7
2
IC 2
7
2
IC 3
7
15.8k
LTC6910-1
LT1884
LTC6910-1
V IN
3
6
3
6
3
6
R 3
0.1
F
0.1
F
0.1
F
4
5
4
5
15.8k
4
5
V
GAIN
CONTROL
V
V
BANDWIDTH
CONTROL
V OUT
1
V IN
GN2 GN1 GN0
0
0
1
BANDWIDTH
1 TO 10 Hz
BW2 BW1 BW0
0
0
1
V OUT
2
V IN
0
0
1
1
1
0
BANDWIDTH
1 TO 20 Hz
0
0
1
1
1
0
BANDWIDTH
1 TO 50 Hz
1
V OUT
5
V IN
1
BANDWIDTH
1 TO 100 Hz
0
0
0
V OUT
10
V IN
0
0
0
BANDWIDTH
1 TO 200 Hz
1
1
1
1
V OUT
20
V IN
1
1
1
1
1 TO 500 Hz
BANDWIDTH 1Hz TO 1 kHz
1
1
0
V OUT
50
V IN
1
1
0
1
V OUT
100
V IN
1
This detailed implementation of the circuit in Figure 1 operates with dual power supplies.
amplifier with control of
both gain and bandwidth.
The amplifier’s input is a
PGA (programmable-gain
amplifier) providing gain
control (Gain A). Following
the input PGA is a first-or-
der highpass filter formed
with capacitor C 1 and input
resistor R 1 of an integrator
circuit. Inside the integra-
tor’s feedback path, the gain
of a second PGA (Gain B)
multiplies the integrator’s
10
to provide high SNR. For ex-
ample, the SNR is 76 dB for
a 10-mV peak-to-peak signal
with a gain of 100 and 100-
Hz bandwidth or 64 dB for
a 100-mV peak-to-peak sig-
nal with a gain of 10 and 1-
kHz bandwidth. With an
LT1884 dual op amp (gain-
bandwidth product of 1
MHz), the circuit’s upper
frequency response can in-
crease to 10 kHz by reducing
the value of C 2 . (The lower
0
BW2 BW1 BW0
10
20
30
GAIN
(dB)
40
BW2 BW1 BW0
0 0 1
50
60
BW2 BW1 BW0
1 0 0
3-dB frequency, thus pro-
viding bandwidth control.
Figure 2 shows a com-
plete circuit implementa-
tion using two LTC6910-1
digitally controlled PGAs
and an LT1884 dual
op amp. The input
LTC6910-1, IC 1 ,provides
digital gain control from 1 to 100 using
a 3-bit digital input to select gains of 1,
2, 5, 10, 20, 50, and 100. The circuit’s low-
er
70
3-dB frequency increases
by reducing the value of C 1 .)
The circuit in Figure 2 oper-
ates with
80
5.5V dual power
supplies. You can convert it
to a single-supply 2.7 to 10V
circuit by grounding Pin 4 of
IC 1 ,IC 2 , and IC 3 ; connecting
a 1-
1
10
100
1k
10k
100k
FREQUENCY (Hz)
Figure 3
The frequency response of Figure 2’s circuit shows unity gain
and three digital bandwidth-control inputs.
F capacitor from Pin 2
of IC 1 to ground; and connecting Pin 2
of IC 1 to pins 3 and 5 of IC 2 and Pin 2 of
IC 3 . Figure 3 shows the frequency re-
sponse of the circuit in Figure 2 with
unity gain and three digital bandwidth-
control inputs.
The integrator’s digital gain control be-
comes digital bandwidth control, which
provides an upper
3-dB frequency
control of 10 Hz to 1 kHz. The circuit’s
low-noise LT1 884 op amp and LTC6910-
1 (9 nV/
3-dB frequency is fixed and set to 1
Hz. A second LTC6910-1, IC 3 , is inside
an LT1884-based (IC 2 ) integrator loop.
Hz for each device) combine
74 EDN | FEBRUARY 5, 2004
www.edn.com
V
BANDWIDTH
659317884.018.png 659317884.019.png 659317884.020.png 659317884.021.png 659317884.022.png 659317884.024.png 659317884.025.png 659317884.026.png 659317884.027.png 659317884.028.png 659317884.029.png 659317884.030.png 659317884.031.png 659317884.032.png 659317884.033.png 659317884.035.png 659317884.036.png 659317884.037.png 659317884.038.png 659317884.039.png 659317884.040.png 659317884.041.png 659317884.042.png 659317884.043.png 659317884.044.png 659317884.046.png 659317884.047.png 659317884.048.png 659317884.049.png 659317884.050.png
design
ideas
1-kV power supply produces a continuous arc
Robert Sheehan, Linear Technology, Milpitas, CA
ing power supply that can produce
a sustained arc can be challenging.
This compact and efficient design deliv-
ers 1 kV at 20W and can withstand a con-
tinuous arcing, or short-circuit, condi-
tion ( Figure 1 ). It uses standard, com-
mercially available components. R 1 sets
the LTC1871 switching-regulator con-
troller for a nominal operating frequen-
cy of 120 kHz. The circuit operates as a
discontinuous flyback structure, produc-
ing 333V across C 1 . The diode/capacitor
charge-pump multiplier triples this volt-
age to create 1000V at the output. Figure
2 shows the switching waveforms. When
the primary switch, Q 1 , is on, the output
rectifiers are reverse-biased, and energy is
stored in the transformer, T 1 . When Q 1
turns off, energy transfers to the second-
ary winding, and C 2 and C 3 pump up the
output voltage through the rectifiers. The
primary voltage goes high and is clamped
through the transformer
and rectifier, D 1 , by the
voltage across C 1 .The
transformer is well-cou-
pled, so the leakage in-
ductance creates little
voltage spike. A small RC
snubber across the pri-
mary winding damps the
ringing and reduces EMI
(electromagnetic inter-
ference).
For current-limit pro-
tection, the circuit
in Figure 1 contains
two active circuits and
one passive element. The
voltage across the cur-
rent-sense resistor, R 2 ,
limits peak primary cur-
rent to 7.5A. Q 2 provides secondary-side
current limit. Notice the bump on the
leading edge of the current ramp of Trace
Figure 2
These are the switching waveforms for the circuit
in Figure 1. Channel 1is the primary-switch volt-
age at T 1 , Pin 12; Channel 2 is the primary-switch current into Q 1
drain (10A/division); Channel 3 is the secondary-switch voltage
at T 1 , Pin 2 (200V/division); Channel 4 is the voltage across R 3 .
(Secondary-switch current=2V/1.5 =1.33A/division.)
2 in Figure 2 . This bump coincides with
the positive excursion of the voltage
across R 3 in Trace 4, which is the refresh
WARNING: LETHAL VOLTAGE POTENTIALS!
Figure 1
C 2
C 3
0.022
F
0.022
F
R 4
100
5W
500V
500V
V IN
9 TO 18V DC
D 1
D 2
D 3
D 4
D 5
1 kV O UT
1
T 1
2
33
1/4W
4.99M
10 F
25V
10 F
25V
10 F
25V
12
11
220 pF
200V
0.022 F
500V
0.022 F
500V
68.1k
3
4.99M
10
C 1
0.022 F
500V
0.01 F
1500V
0.01 F
1500V
4
100
1
RUN
SENSE
10
9
5
2
I TH
IC 1
LTC1871
V IN
9
Q 1
Si7456DP
3
8
8
FB
INTV CC
6
1 nF
4
7
FREQ
GATE
33k
R 1
220k
Q 2
VN2222
7
12.4k
5
MODE
GND
6
12.4k
6.8 nF
R 2
0.02
4.7 F
R 3
1.5
NOTES: D 1 , D 2 , D 3 , D 4 , D 5 : MURS160.
T 1 : COPPER VP5-0155.
This circuit delivers 1 kV from a low-voltage input and can produce continuous arcing.
76 EDN | FEBRUARY 5, 2004
www.edn.com
D ESIGNING A HIGH-VOLTAGE switch-
659317884.051.png 659317884.052.png 659317884.053.png 659317884.054.png 659317884.055.png 659317884.057.png 659317884.058.png 659317884.059.png 659317884.060.png 659317884.061.png 659317884.062.png 659317884.063.png 659317884.064.png 659317884.065.png 659317884.066.png 659317884.068.png 659317884.069.png 659317884.070.png 659317884.071.png 659317884.072.png 659317884.073.png 659317884.074.png 659317884.075.png 659317884.076.png 659317884.077.png 659317884.079.png 659317884.080.png 659317884.081.png 659317884.082.png 659317884.083.png 659317884.084.png 659317884.085.png 659317884.086.png 659317884.087.png 659317884.088.png 659317884.090.png 659317884.091.png 659317884.092.png 659317884.093.png 659317884.094.png 659317884.095.png 659317884.096.png 659317884.097.png 659317884.098.png 659317884.099.png 659317884.101.png 659317884.102.png 659317884.103.png 659317884.104.png 659317884.105.png 659317884.106.png 659317884.107.png 659317884.108.png 659317884.109.png 659317884.110.png 659317884.112.png 659317884.113.png 659317884.114.png 659317884.115.png 659317884.116.png 659317884.117.png 659317884.118.png 659317884.119.png 659317884.120.png 659317884.121.png 659317884.123.png 659317884.124.png 659317884.125.png 659317884.126.png 659317884.127.png 659317884.128.png 659317884.129.png 659317884.130.png 659317884.131.png 659317884.132.png 659317884.134.png 659317884.135.png 659317884.136.png 659317884.137.png 659317884.138.png 659317884.139.png 659317884.140.png 659317884.141.png 659317884.142.png 659317884.143.png 659317884.145.png 659317884.146.png 659317884.147.png 659317884.148.png 659317884.149.png 659317884.150.png 659317884.151.png 659317884.152.png
 
Zgłoś jeśli naruszono regulamin