Werner Carl Heisenberg
Przekład Stefana Amsterdamskiego
OD REDAKCJI
Gdy mówi się dziś o fizyce współczesnej, na myśl przychodzi przede wszystkim broń atomowa. Wszyscy zdają sobie sprawę z tego, jak ogromny wpływ ma istnienie tej broni na stosunki polityczne w świecie współczesnym, wszyscy zgodnie przyznają, że nigdy jeszcze wpływ fizyki na ogólną sytuację nie był tak wielki, jak obecnie. Czy jednak polityczny aspekt fizyki współczesnej rzeczywiście jest najbardziej doniosły? W jakiej mierze i na co fizyka miałaby wpływ, gdyby struktura polityczna świata została przystosowana do nowych możliwości technicznych?
Aby odpowiedzieć na te pytania, należy przypomnieć, że wraz z produkcją nowych narzędzi zawsze rozpowszechniają się idee, dzięki którym zostały one stworzone. Ponieważ każdy naród i każde ugrupowanie polityczne niezależnie od położenia geograficznego i tradycji kulturowych danego kraju musi w tej lub innej mierze interesować się nową bronią, przeto idee fizyki współczesnej przenikać będą do świadomości wielu narodów i zespalać się w rozmaity sposób ze starymi, tradycyjnymi poglądami. Jaki będzie wynik oddziaływania poglądów z tej dziedziny nauki współczesnej na głęboko zakorzenione stare tradycje? W tych krajach, w których powstała nauka współczesna, już od dawna niezmiernie żywo interesowano się praktycznymi zagadnieniami produkcji i technologii oraz ściśle z nimi związaną racjonalną analizą wewnętrznych i zewnętrznych warunków zastosowania odkryć naukowych w przemyśle. Narodom tych krajów dość łatwo będzie zrozumieć nowe koncepcje; miały czas na to, by powoli, stopniowo przyswajać sobie metody nowoczesnego myślenia naukowego. W innych krajach nastąpi starcie nowych idei z religijnymi i filozoficznymi poglądami stanowiącymi podstawę rodzimej kultury. Skoro prawdą jest, że teorie fizyki współczesnej nadają nowy sens tak podstawowym pojęciom, jak rzeczywistość, przestrzeń i czas, to w wyniku konfrontacji starych i nowych poglądów mogą zrodzić się zupełnie nowe kierunki rozwoju myśli, których dziś nie sposób jeszcze przewidzieć. Jedną z istotnych cech tej konfrontacji współczesnej nauki z dawnymi metodami myślenia będzie to, że nauce właściwy będzie całkowity internacjonalizm. W tej wymianie myśli jeden z partnerów - stare tradycje - będzie miał różne oblicze na rozmaitych kontynentach, drugi zaś, nauka - wszędzie będzie taka sama. Toteż wyniki owej wymiany idei będą docierały tam wszędzie, gdzie będą się toczyły dyskusje.
Z wymienionych wyżej względów może okazać się pożyteczna próba wyłożenia - w sposób możliwie przystępny - koncepcji fizyki współczesnej, rozpatrzenia wniosków filozoficznych, które z nich wynikają, i porównania ich z pewnymi starymi, tradycyjnymi poglądami.
Najlepszym zapewne wprowadzeniem w problemy fizyki współczesnej jest omówienie historycznego rozwoju teorii kwantów. Oczywiście, teoria kwantów to jedynie mały wycinek fizyki atomowej, która z kolei jest niewielkim tylko fragmentem nauki współczesnej. Ale najbardziej zasadnicze zmiany sensu pojęcia rzeczywistości spowodowało właśnie powstanie teorii kwantów, w której wykrystalizowały się ostatecznie i skupiły nowe idee fizyki atomowej. Innym jeszcze aspektem tej dziedziny nauki współczesnej, odgrywającym nader istotną rolę, jest posługiwanie się niezwykle skomplikowanym wyposażeniem technicznym niezbędnym do prowadzenia fizycznych badań nad zjawiskami mikro-świata. Jednakże, jeśli chodzi o technikę doświadczalną fizyki jądrowej, to polega ona na stosowaniu niezwykle udoskonalonej, lecz tej samej metody badań, która warunkowała rozwój nauki nowożytnej od czasów Huyghensa, Volty czy też Faradaya. Zupełnie podobnie, onieśmielająco trudny aparat matematyczny niektórych działów teorii kwantów można traktować jako ostateczny wynik rozwoju metod, którymi posługiwali się Newton, Gauss i Maxwell. Natomiast zmiana sensu pojęcia rzeczywistości spowodowana przez mechanikę kwantową nie jest skutkiem kontynuacji dawnych idei; wydaje się, że jest ona zmianą przełomową, która naruszyła dotychczasową strukturę nauki.
Z tego względu pierwszy rozdział książki poświęcony został analizie historycznego rozwoju teorii kwantów.
Powstanie teorii kwantów jest związane z badaniami nad dobrze znanym zjawiskiem, którym nie zajmuje się żaden z centralnych działów fizyki atomowej. Każda próbka materii, gdy jest ogrzewana, rozżarza się, najpierw do czerwoności, później zaś, w wyższej temperaturze, do białości. Barwa silnie ogrzanego ciała w nieznacznej tylko mierze zależy od rodzaju substancji, a w przypadku ciała czarnego zależy wyłącznie od temperatury. Toteż promieniowanie ciała czarnego w wysokiej temperaturze stanowi obiecujący obiekt badań fizycznych. Jest to nieskomplikowane zjawisko, które powinno być łatwo wytłumaczone na podstawie znanych praw promieniowania i praw zjawisk cieplnych. W końcu dziewiętnastego stulecia lord Rayleigh i Jeans próbowali je wytłumaczyć w taki właśnie sposób; próba jednakże nie powiodła się, przy czym ujawniły się trudności natury zasadniczej. Nie jest rzeczą możliwą przedstawić je tutaj w sposób przystępny. Dlatego też zadowolić się musimy stwierdzeniem, że stosowanie praw fizycznych znanych w owym czasie nie doprowadziło do zadowalających wyników. Kiedy w 1895 roku Pianek zajął się tym zagadnieniem, spróbował je potraktować raczej jako problem promieniującego atomu niż problem promieniowania. Takie ujęcie nie usunęło żadnych trudności, uprościło jednak interpretację faktów doświadczalnych. W tym właśnie okresie, latem 1900 roku, Kurlbaum i Rubens przeprowadzili w Berlinie bardzo dokładne pomiary widma promieniowania cieplnego. Kiedy Pianek dowiedział się o wynikach tych pomiarów, spróbował je wyrazić za pomocą prostych wzorów matematycznych, które wydawały się zgodne z wynikiem jego własnych badań dotyczących zależności między ciepłem i promieniowaniem. Pewnego dnia, goszcząc u Plancka, Rubens porównywał wspólnie z nim wyniki ostatnich swych pomiarów z wzorem proponowanym przez Plancka. Okazało się, że wzór jest całkowicie zgodny z danymi doświadczeń. W ten sposób zostało odkryte prawo Plancka, prawo promieniowania cieplnego [1].
Był to jednak dopiero początek intensywnych badań teoretycznych, które podjął Pianek. Należało podać właściwą interpretację fizyczną nowego wzoru. Wobec tego, że na podstawie swych wcześniejszych prac Pianek łatwo mógł przełożyć swój wzór na twierdzenie o promieniującym atomie (o tak zwanym oscylatorze), to wkrótce już musiał zauważyć, że z wzoru tego wynika, iż oscylator może emitować energię jedynie kwantami, a więc w sposób nieciągły. Wniosek ten był tak zaskakujący i tak różnił się od wszystkiego, co wiedziano dotychczas z fizyki klasycznej, że Pianek z pewnością nie mógł natychmiast uznać go za słuszny. Jednakże w ciągu lata 1900 roku, lata, podczas którego pracował niezwykle intensywnie, przekonał się on ostatecznie, że wniosek ten narzuca się nieuchronnie. Syn Plancka opowiadał, że pewnego dnia podczas długiego spaceru w Grunewald - lesie na przedmieściu Berlina - ojciec mówił mu o swych nowych koncepcjach. Podczas tego spaceru Pianek zwierzył się, iż czuje, że dokonał odkrycia pierwszorzędnej wagi, które, być może, da się porównać jedynie z odkryciami Newtona. Tak więc musiał on już wówczas zdawać sobie sprawę, że jego wzór dotyczy podstaw naszego sposobu opisywania przyrody i że pewnego dnia podstawy te ulegną modyfikacji i przybiorą nową, dotychczas nie znaną postać. Pianek - uczony o konserwatywnych poglądach - bynajmniej nie był zadowolony z takich konsekwencji swego odkrycia; niemniej w grudniu 1900 roku opublikował swą hipotezę kwantową.
Pogląd, który głosił, że energia może być pochłaniana i emitowana jedynie kwantami, w sposób nieciągły, był całkowicie nowy i zupełnie się nie mieścił w ramach tradycyjnych koncepcji fizycznych. Podjęta przez Plancka próba pogodzenia nowej hipotezy z poprzednio odkrytymi prawami promieniowania spełzła na niczym, nie udało mu się bowiem usunąć pewnych sprzeczności o zasadniczym charakterze. Minąć jednakże musiało aż pięć lat, zanim zdołano uczynić następny krok w nowym kierunku.
Wówczas właśnie młody Albert Einstein, rewolucyjny geniusz wśród fizyków, odważył się odejść jeszcze dalej od starych teorii. Istniały dwa zagadnienia, do których rozwiązania mógł on zastosować nowe idee. Jednym z nich było zagadnienie tak zwanego zjawiska fotoelektrycznego - emisji elektronów z metali pod wpływem promieniowania świetlnego. Doświadczenia, w szczególności doświadczenia Lenarda, wykazały, że energia emitowanego elektronu nie zależy od natężenia promieniowania świetlnego, lecz wyłącznie od jego barwy, mówiąc zaś ściślej - od jego częstotliwości. Dotychczasowa teoria promieniowania nie mogła wyjaśnić tego faktu. Einstein zdołał wytłumaczyć zaobserwowane zjawiska, interpretując w odpowiedni sposób hipotezę Plancka. Interpretacja ta głosiła, że światło składa się z kwantów energii poruszających się w przestrzeni. Zgodnie z założeniami hipotezy kwantów energia kwantu świetlnego powinna być równa iloczynowi częstotliwości światła i stałej Plancka.
Drugim zagadnieniem był problem ciepła właściwego ciał stałych.. Wartości ciepła właściwego obliczone na podstawie dotychczasowej teorii były zgodne z danymi doświadczeń tylko w zakresie wysokich temperatur; w zakresie niskich temperatur teoria była sprzeczna z danymi empirii. Również i w tym przypadku Einstein zdołał wykazać, że fakty te stają się zrozumiałe, jeśli sprężyste drgania atomów w ciałach stałych zinterpretuje się na podstawie hipotezy kwantów. Wyniki obu tych prac Einsteina były wielkim krokiem naprzód, dowodziły bowiem, że kwant działania - jak nazywają fizycy stałą Plancka - występuje w różnych zjawiskach, również i takich, które bezpośrednio nie mają nic wspólnego z promieniowaniem cieplnym. Świadczyły one jednocześnie o tym, że nowa hipoteza ma charakter głęboko rewolucyjny: pierwszy z nich prowadził do opisu zjawisk świetlnych w sposób całkowicie odmienny od tradycyjnego opisu opartego na teorii falowej. Światło można było obecnie traktować bądź jako fale elektromagnetyczne - zgodnie z teorią Maxwella - bądź jako szybko poruszające się w przestrzeni kwanty świetlne, czyli porcje energii. Ale czy obydwa te opisy mogą być jednocześnie słuszne? Einstein wiedział oczywiście, że dobrze znane zjawiska dyfrakcji i interferencji wyjaśnić można jedynie na podstawie teorii falowej; nie mógł też kwestionować istnienia absolutnej sprzeczności między hipotezą kwantów świetlnych a teorią falową. Nie podjął on próby usunięcia sprzeczności między interpretacją falową i interpretacją opartą na hipotezie kwantów. Sprzeczność tę traktował po prostu jako coś, co prawdopodobnie zostanie wytłumaczone dopiero znacznie później.
Tymczasem doświadczenia Becquerela, Curie i Rutherforda w pewnym stopniu wyjaśniły problem budowy atomu. W roku l911 na podstawie swych badań nad przenikaniem cząstek a [alfa] przez materię Rutherford opracował słynny model atomu. Atom przedstawiony został jako układ składający się z dodatnio naładowanego jądra, w którym skupiona jest niemal cała masa atomu, i z elektronów, krążących wokół niego jak planety wokół Słońca. Powstawanie wiązań chemicznych miedzy atomami różnych pierwiastków potraktowano jako wynik wzajemnego oddziaływania zewnętrznych elektronów tych atomów. Jądro nie ma bezpośredniego wpływu na wiązania chemiczne. Chemiczne własności atomów zależą od jądra w sposób pośredni, wskutek tego, że jego ładunek decyduje o ilości elektronów w nie zjonizowanym atomie. Model ten początkowo nie wyjaśniał jednej z najbardziej charakterystycznych własności atomu, a mianowicie jego niezmiernej trwałości. Żaden układ planetarny, który porusza się zgodnie z prawami Newtona, nie może powrócić do stanu wyjściowego po zderzeniu z innym tego rodzaju układem. Natomiast atom, np. węgla, pozostaje atomem węgla, niezależnie od zderzeń i oddziaływań, którym ulega podczas reakcji chemicznej.
W roku 1913 Bohr, opierając się na hipotezie kwantów, sformułowanej przez Plancka, wytłumaczył tę niezwykłą trwałość atomu. Jeśli energia atomu może się zmieniać jedynie w sposób nieciągły - to wynika stąd nieuchronnie, że atom może znajdować się jedynie w dyskretnych stanach stacjonarnych, z których stan odpowiadający najmniejszej energii jest jego stanem normalnym. Dlatego atom poddany jakiemukolwiek oddziaływaniu powróci ostatecznie do swego normalnego stanu.
Dzięki zastosowaniu teorii kwantów do konstruowania modelu atomu Bohr zdołał nie tylko wyjaśnić fakt trwałości atomów, lecz również podać dla niektórych prostszych przypadków teoretyczne wytłumaczenie charakteru liniowego widma promieniowania emitowanego przez atomy wzbudzone wskutek działania ciepła lub wyładowań elektrycznych. Jego teoria była oparta na prawach mechaniki klasycznej - zgodnie z którymi miały się poruszać elektrony po orbicie - oraz na pewnych warunkach kwantowych, nakładających ograniczenia na ruch elektronów i wyznaczających stacjonarne stany układu. Ścisłe matematyczne sformułowanie tych warunków podał później Sommerfeld. Bohr świetnie zdawał sobie sprawę z tego, że owe warunki naruszają w pewnym stopniu wewnętrzną zwartość mechaniki newtonowskiej. Na podstawie teorii Bohra można obliczyć częstotliwość promieniowania emitowanego przez najprostszy atom - atom wodoru, przy czym wynik okazuje się całkowicie zgodny z doświadczeniem. Uzyskane wartości różnią się jednak od częstości orbitalnych oraz ich harmonicznych dla elektronów obracających się wokół jądra i fakt ten był dodatkowym świadectwem tego, że teoria zawierała cały szereg sprzeczności. Zawierała ona jednak również istotną część prawdy. Podawała jakościowe wytłumaczenie chemicznych własności atomów oraz własności widm liniowych. Doświadczenia Francka i Hertza oraz Sterna i Gerlacha potwierdziły istnienie dyskretnych stanów stacjonarnych.
Teoria Bohra dała początek nowemu kierunkowi badań. Wielką ilość empirycznych danych z dziedziny spektroskopii, nagromadzonych w ciągu ubiegłych dziesięcioleci, można było obecnie wyzyskać do badania dziwnych praw kwantowych, którym podlegają ruchy elektronów w atomie. Do tego samego celu można było wyzyskać również dane rozmaitych doświadczeń chemicznych. Mając do czynienia z tego rodzaju problemami, fizycy nauczyli się prawidłowo formułować swe problemy; właściwe zaś postawienie zagadnienia często oznacza przebycie większej części drogi, która nas dzieli od jego rozwiązania.
Jakież to były problemy? W gruncie rzeczy wszystkie one były związane z zaskakującymi sprzecznościami między wynikami różnych doświadczeń. Jakże to jest możliwe, by to samo promieniowanie, które ma charakter falowy, o czym niezbicie świadczą zjawiska interferencji, wywoływało również zjawisko fotoelektryczne, a więc składało się z cząstek? Jakże to jest możliwe, by częstość obrotów elektronów wokół jądra nie zgadzała się z częstotliwością emitowanego promieniowania? Czy świadczy to o tym, że elektrony nie krążą po orbitach? Jeżeli zaś koncepcja orbit elektronowych jest niesłuszna, to co się dzieje z elektronem wewnątrz atomu? Ruch elektronów można obserwować w komorze Wilsona: czasami elektrony ulegają wybiciu z atomów. Dlaczego więc nie miałyby one poruszać się również wewnątrz atomów? Co prawda, można sobie wyobrazić, że gdy atom znajduje się w stanie normalnym, czyli w stanie, któremu odpowiada najniższa energia, to elektrony mogą pozostawać w stanie spoczynku. Istnieją jednakże inne stany energetyczne atomów, w których powłoki elektronowe mają momenty pędu. W przypadku tego rodzaju stanów elektrony na pewno nie mogą pozostawać w spoczynku. Podobne przykłady można mnożyć. Przekonywano się ustawicznie, że próby opisania zjawisk mikroświata w terminach fizyki klasycznej prowadzą do sprzeczności.
W pierwszej połowie lat dwudziestych fizycy stopniowo przyzwyczaili się do tych sprzeczności. Zorientowali się już z grubsza, gdzie i kiedy należy się ich spodziewać, i nauczyli się przezwyciężać trudności z nimi związane. Wiedzieli już, jak należy prawidłowo opisywać zjawiska atomowe, z którymi mieli do czynienia w poszczególnych eksperymentach. Nie wystarczało to wprawdzie do stworzenia spójnego, ogólnego opisu przebiegu procesów kwantowych, niemniej jednak wpływało na zmianę sposobu myślenia fizyków; stopniowo wnikali oni w ducha nowej teorii. Toteż już przed uzyskaniem spójnego sformułowania teorii kwantów umiano mniej lub bardziej dokładnie przewidywać wyniki poszczególnych doświadczeń.
Często dyskutowano nad tak zwanymi eksperymentami myślowymi. Ich celem jest udzielanie odpowiedzi na pewne nader istotne pytania - niezależnie od tego, czy aktualnie potrafi się przeprowadzić rzeczywiste doświadczenia odpowiadające tym eksperymentom myślowym. Jest bez wątpienia rzeczą ważną, by doświadczenia te zasadniczo można było zrealizować; ich technika może być jednak wielce skomplikowana. Eksperymenty myślowe okazały się niezwykle pomocne w wyjaśnieniu niektórych zagadnień. W przypadkach, gdy fizycy nie byli zgodni co do wyników tych lub innych eksperymentów tego rodzaju, często udawało się obmyśleć inne, po...
wlochaty6666