IRF9540.pdf

(130 KB) Pobierz
Irf9540n.p65
PD - 91437B
IRF9540N
HEXFET ® Power MOSFET
l Advanced Process Technology
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l P-Channel
l Fully Avalanche Rated
D
V DSS = -100V
G
R DS(on) = 0.117
W
I D = -23A
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
S
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
TO-220AB
Absolute Maximum Ratings
Parameter
Max.
Units
I D @ T C = 25°C
Continuous Drain Current, V GS @ -10V
-23
I D @ T C = 100°C
Continuous Drain Current, V GS @ -10V
-16
A
I DM
Pulsed Drain Current
-76
P D @T C = 25°C
Power Dissipation
140
W
Linear Derating Factor
0.91
W/°C
V GS
Gate-to-Source Voltage
± 20
V
E AS
Single Pulse Avalanche Energy
430
mJ
I AR
Avalanche Current
-11
A
E AR
Repetitive Avalanche Energy
14
mJ
dv/dt
Peak Diode Recovery dv/dt
-5.0
V/ns
T J
Operating Junction and
-55 to + 175
T STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
°C
300 (1.6mm from case )
Mounting torque, 6-32 or M3 srew
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
Typ.
Max.
Units
R q JC
Junction-to-Case
–––
1.1
R q CS
Case-to-Sink, Flat, Greased Surface
0.50
–––
°C/W
R q JA
Junction-to-Ambient
–––
62
5/13/98
274676701.011.png 274676701.012.png
IRF9540N
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V (BR)DSS
Drain-to-Source Breakdown Voltage
-100 ––– –––
V
V GS = 0V, I D = -250µA
D
V (BR)DSS /
D
T J Breakdown Voltage Temp. Coefficient ––– -0.11 ––– V/°C Reference to 25°C, I D = -1mA
R DS(on)
Static Drain-to-Source On-Resistance ––– ––– 0.117
W
V GS = -10V, I D = -11A
V GS(th)
Gate Threshold Voltage
-2.0 ––– -4.0
V
V DS = V GS , I D = -250µA
g fs
Forward Transconductance
5.3 ––– –––
S
V DS = -50V, I D = -11A
I DSS
Drain-to-Source Leakage Current
––– ––– -25
µA
V DS = -100V, V GS = 0V
––– ––– -250
V DS = -80V, V GS = 0V, T J = 150°C
I GSS
Gate-to-Source Forward Leakage
––– ––– 100
nA
V GS = 20V
Gate-to-Source Reverse Leakage
––– ––– -100
V GS = -20V
Q g
Total Gate Charge
––– ––– 97
I D = -11A
Q gs
Gate-to-Source Charge
––– ––– 15
nC V DS = -80V
Q gd
Gate-to-Drain ("Miller") Charge
––– ––– 51
V GS = -10V, See Fig. 6 and 13
t d(on)
Turn-On Delay Time
–––
15 –––
V DD = -50V
t r
Rise Time
–––
67 –––
ns
I D = -11A
t d(off)
Turn-Off Delay Time
–––
51 –––
R G = 5.1
W
t f
Fall Time
–––
51 –––
R D = 4.2 W, See Fig. 10
Between lead,
D
L D
Internal Drain Inductance
–––
4.5
–––
6mm (0.25in.)
from package
and center of die contact
nH
G
L S
Internal Source Inductance
–––
7.5
–––
S
C iss
Input Capacitance
––– 1300 –––
V GS = 0V
C oss
Output Capacitance
––– 400 –––
pF V DS = -25V
C rss
Reverse Transfer Capacitance
––– 240 –––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I S
Continuous Source Current
MOSFET symbol
D
––– –––
-23
(Body Diode)
showing the
A
Pulsed Source Current
integral reverse
I SM
––– –––
-76
G
(Body Diode)
p-n junction diode.
S
V SD
Diode Forward Voltage
––– ––– -1.6
V
T J = 25°C, I S = -11A, V GS = 0V
t rr
Reverse Recovery Time
––– 150 220
ns T J = 25°C, I F = -11A
Q rr
Reverse RecoveryCharge
––– 830 1200 nC di/dt = -100A/µs
t on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L S +L D )
Notes:
max. junction temperature. ( See fig. 11 )
Repetitive rating; pulse width limited by
I SD £
-11A, di/dt
£
-470A/µs, V DD £
V (BR)DSS ,
T J £
175°C
R G = 25 W , I AS = -11A. (See Figure 12) Pulse width £ 300µs; duty cycle £ 2%.
Starting T J = 25°C, L = 7.1mH
274676701.013.png 274676701.014.png
IRF9540N
100
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTTOM - 4.5V
100
VGS
TOP - 15V
- 10V
- 8.0V
- 7.0V
- 6.0V
- 5.5V
- 5.0V
BOTTOM - 4.5V
10
10
-4.5V
-4.5V
20µs PULSE WIDTH
T = 25°C
20µs PULSE W IDTH
T = 175°C
1
J
A
1
J
A
0.1
1
10
100
0.1
1
10
100
-V , Drain-to-Source Voltage (V)
DS
-V , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.5
I = -19A
D
T = 25°C
J
2.0
10
T = 175°C
J
1.5
1.0
1
0.5
V = -25V
20µs PULSE W IDTH
DS
0.1
V = -10V
A
0.0
A
4
5
6
7
8
9
1 0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature (°C)
-V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
c
C
DS
GS
274676701.001.png 274676701.002.png 274676701.003.png
IRF9540N
3000
20
V = 0V , f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GS
iss gs gd ds
rss gd
oss ds gd
I = -11A
D
2500
16
V = -80V
V = -50V
V = -20V
DS
DS
DS
2000
C iss
12
1500
C oss
8
1000
C rss
500
4
0
A
0
FOR TEST CIRCUIT
SEE FIGURE 13
A
1
10
100
0
2 0
4 0
6 0
8 0
1 0 0
-V , Drain-to-Source Voltage (V)
DS
Q , Total Gate Charge (nC)
G
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
OPE RATION IN THIS AREA LIMITE D
BY R DS(on)
10
100
T = 175°C
T = 25°C
J
100µs
1
10
1ms
T = 25°C
T = 175°C
Single Pulse
10ms
0.1
V = 0V
A
1
A
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1
10
100
1000
-V , Source-to-Drain Voltage (V)
SD
-V , Drain-to-Source Voltage (V)
DS
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
J
C
J
GS
274676701.004.png 274676701.005.png
IRF9540N
V DS
R D
25
V GS
D.U.T.
R G
20
+
V DD
15
-10V
Pulse Width £ 1 µs
Duty Factor £ 0.1 %
10
Fig 10a. Switching Time Test Circuit
t d (on ) t r
t d (o f f ) t f
5
V GS
10%
0
25
50
75
100
125
150
175
T , Case Temperature ( C)
C
°
90%
V DS
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
10
1
D = 0.50
0.20
0.10
P
DM
0.1
0.05
1
0.02
SINGLE PULSE
(THERMAL RESPONSE)
t
2
Notes:
1. Duty factor D = t / t
2. Peak T = P
1
2
J
DM
x Z
thJC
+ T
C
0.01
0.00001
0.0001
0.001
0.01
0.1
1
t , Rectangular Pulse Duration (sec)
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
-
t
0.01
274676701.006.png 274676701.007.png 274676701.008.png 274676701.009.png 274676701.010.png
Zgłoś jeśli naruszono regulamin