2n6437-d.pdf

(71 KB) Pobierz
2N6437
ON Semiconductor
High-Power PNP Silicon
Transistors
. . . designed for use in industrial–military power amplifier and
switching circuit applications.
2N6437
2N6438
*
*ON Semiconductor Preferred Device
High Collector–Emitter Sustaining Voltage —
V CEO(sus) = 100 Vdc (Min) — 2N6437
= 120 Vdc (Min) — 2N6438
25 AMPERE
POWER TRANSISTORS
PNP SILICON
100, 120 VOLTS
200 WATTS
High DC Current Gain —
h FE = 20–80 @I C = 10 Adc
= 12 (Min) @ I C = 25 Adc
Low Collector–Emitter Saturation Voltage —
V CE(sat) = 1.0 Vdc (Max) @ I C = 10 Adc
Fast Switching Times @ I C = 10 Adc
t r = 0.3
m
s (Max)
t s = 1.0
m
s (Max)
CASE 1–07
TO–204AA
(TO–3)
t f = 0.25
m
s (Max)
Complement to NPN 2N6339 thru 2N6341
MAXIMUM RATINGS (1)
Rating
Symbol ÎÎÎÎ
2N6437 ÎÎÎÎ
2N6438 ÎÎÎ
Unit
Collector–Base Voltage ÎÎÎÎ
V CB ÎÎÎÎ
120 ÎÎÎÎ
140 ÎÎÎ
Vdc
Collector–Emitter Voltage ÎÎÎÎ
V CEO ÎÎÎÎ
100 ÎÎÎÎ
120 ÎÎÎ
Vdc
Emitter–Base Voltage
V EB ÎÎÎÎÎÎÎ
6.0
Vdc
Collector Current — Continuous
Peak
I C
25
50
Adc
Base Current
I B ÎÎÎÎÎÎÎ
10 ÎÎÎ
Adc
Total Device Dissipation @ T C = 25 C
Derate above 25 C
P D ÎÎÎÎÎÎÎ
200
1.14
Watts
W/ C
Operating and Storage Junction
Temperature Range
T J ,T stg
–65 to +200
C
THERMAL CHARACTERISTICS
Characteristic ÎÎÎÎÎ
Symbol ÎÎÎÎÎÎ
Max ÎÎÎ
Unit
Thermal Resistance, Junction to Case ÎÎÎÎÎ
R q JC ÎÎÎÎÎÎ
0.875 ÎÎÎ
C/W
(1) Indicates JEDEC Registered Data.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
W Semiconductor Components Industries, LLC, 2001
April, 2001 – Rev. 2
1
Publication Order Number:
2N6437/D
23105137.007.png 23105137.008.png 23105137.009.png 23105137.010.png
2N6437 2N6438
200
175
150
125
100
75
50
25
0 0
25
50
75
100
125
150
175
200
T C , CASE TEMPERATURE ( ° C)
Figure 1. Power Derating
http://onsemi.com
2
23105137.001.png
2N6437 2N6438
*ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted)
Characteristic
Symbol ÎÎÎ
Min ÎÎÎÎ
Max ÎÎÎ
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (1)
(I C = 50 mAdc, I B = 0)
V CEO(sus) ÎÎÎ
Vdc
2N6437
2N6438
100
120
Collector Cutoff Current
(V CE = 50 Vdc, I B = 0)
I CEO ÎÎÎ
m Adc
2N6437
50
50
(V CE = 60 Vdc, I B = 0)
2N6438
Collector Cutoff Current
(V CE = 110 Vdc, V BE(off) = –1.5 Vdc)
I CEX
m Adc
2N6437
10
10
1.0
1.0
(V CE = 130 Vdc, V BE(off) = –1.5 Vdc)
2N6438
(V CE = 100 Vdc, V BE(off) = –1.5 Vdc, T C = 150 C)
2N6437
mAdc
(V CE = 120 Vdc, V BE(off) = –1.5 Vdc, T C = 150 C)
2N6438
Collector Cutoff Current
(V CB = 120 Vdc, I E = 0)
I CBO ÎÎÎ
m Adc
2N6437
10
10
(V CB = 140 Vdc, I E = 0)
2N6438
Emitter Cutoff Current (V EB = 6.0 Vdc, I C = 0)
I EBO
ÎÎÎÎ
100 ÎÎÎ
m Adc
ON CHARACTERISTICS
DC Current Gain (1)
(I C = 0.5 Adc, V CE = 2.0 Vdc)
(I C = 10 Adc, V CE = 2.0 Vdc)
(I C = 25 Adc, V CE = 2.0 Vdc)
h FE ÎÎÎ
30
20
12
120
Collector–Emitter Saturation Voltage (1)
(I C = 10 Adc, I B = 1.0 Adc)
(I C = 25 Adc, I B = 2.5 Adc)
V CE(sat) ÎÎÎ
Vdc
1.0
1.8
Base–Emitter Saturation Voltage (1)
(I C = 10 Adc, I B = 1.0 Adc)
(I C = 25 Adc, I B = 2.5 Adc)
V BE(sat) ÎÎÎ
Vdc
1.8
2.5
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Current–Gain — Bandwidth Product (I C = 1.0 Adc, V CE = 10 Vdc, f test = 10 MHz)
f T
40 ÎÎÎÎ
ÎÎÎ
MHz
Output Capacitance (V CE = 10 Vdc, I E = 0, f = 100 kHz)
C ob
ÎÎÎÎ
700 ÎÎÎ
pF
SWITCHING CHARACTERISTICS
Rise Time (V CC = 80 Vdc, I C = 10 A, V BE(off) = 6.0 Vdc, I B1 = 1.0 Adc) ÎÎÎÎÎ
t r ÎÎÎ
ÎÎÎÎ
0.3 ÎÎÎ
m
s
Storage (V CC = 80 Vdc, I C = 10 A, V BE(off) = 6.0 Vdc, I B1 = I B2 = 1.0 Adc) ÎÎÎÎÎ
t s ÎÎÎ
ÎÎÎÎ
1.0 ÎÎÎ
m s
Fall Time (V CC = 80 Vdc, I C = 10 A,V BE(off) = 6.0 Vdc, I B1 = I B2 = 1.0 Adc)
t f
ÎÎÎÎ
0.25 ÎÎÎ
m
s
*Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width
300
m
s; Duty Cycle
2.0%.
V CC
0.3
+ 80 V
0.2
t d @ V BE(off) = 6.0 V
V CC = 80 V
I C /I B = 10
T J = 25 ° C
R C
8.0 OHMS
1.0
0.7
+ 9.0 V
0
R B =
10 OHMS
SCOPE
0.5
0.3
t r
- 11 V
10
m s
MBR74
5
0.2
0.1
0.07
t r , t f 10 ns
DUTY CYCLE = 1.0%
- 5.0 V
0.05
NOTE: For information on Figures 3 and 6, R B and R C were
varied to obtain desired test conditions.
0.03
0.3
0.5
0.7
1.0
2.0 3.0
5.0
7.0
10
20
30
I C , COLLECTOR CURRENT (AMP)
Figure 2. Switching Time Test Circuit
Figure 3. Turn–On Time
http://onsemi.com
3
23105137.002.png
2N6437 2N6438
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
P (pk)
Z q JC (t) = r(t)R q JC
R q JC = 0.875 ° C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t 1
T J(pk) - T C = P (pk) Z q JC (t)
0.1
0.07
0.05
0.03
0.02
0.05
0.02
t 1
0.01
t 2
DUTY CYCLE, D = t 1 /t 2
SINGLE
PULSE
0.01 0.01
0.02 0.03
0.05
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
20
30
50
100
200
300
500
1000
t, TIME OR PULSE WIDTH (ms)
Figure 4. Thermal Response
100
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate I C – V CE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 200
50
200 m s
20
1.0 ms
10
dc
5.0 ms
5.0
T J = 200 ° C
2.0
C; T C is
variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided T J(pk)
1.0
BONDING WIRE LIMITED
THERMALLY LIMITED
T C = 25 ° C(SINGLE PULSE)
PULSE DUTY CYCLE 10%
SECOND BREAKDOWN LIM
ITED
CURVES APPLY
BELOW RATED V CEO
0.5
0.2
C. T J(pk) may be calculated from the data in
Figure 4. At high case temperatures, thermal limitations will
reduce the power that can be handled to values less than the
limitations imposed by second breakdown.
200
0.1
0.05
2N6437
2N6438
0.02
0.01
2.0
3.0
5.0
7.0
10
20
30
50
70
100
200
V CE , COLLECTOREMITTER VOLTAGE (VOLTS)
Figure 5. Active Region Safe Operating Area
3.0
4000
2.0
V CC = 80 V
I B1 = I B2
I C /I B = 10
T J = 25 ° C
3000
t s
C ib
T J = 25 ° C
1.0
2000
0.7
0.5
t f
C ob
1000
0.3
0.2
700
0.1
500
0.07
0.05
300
0.03
0.3
0.5
0.7 1.0
2.0
3.0
5.0
7.0
10
20
30
200
0.1
0.2
0.5
1.0 2.0
5.0
10
20
50
100
I C , COLLECTOR CURRENT (AMP)
V R , REVERSE VOLTAGE (VOLTS)
Figure 6. Turn-Off Time
Figure 7. Capacitance
http://onsemi.com
4
23105137.003.png 23105137.004.png
2N6437 2N6438
200
2.0
T J = 150 ° C
1.8
T J = 25 ° C
1.6
I C = 2.0 A
5.0 A
10 A
20 A
100
70
+ 25 ° C
1.4
1.2
50
-55 ° C
1.0
0.8
30
0.6
0.4
0.2
20
V CE = 2.0 V
V CE = 4.0 V
10
0.3
0.5
0.7 1.0
2.0 3.0
5.0
7.0
10
20
30
0.02
0.03
0.05
0.07
0.1
0.2 0.3
0.5
0.7
1.0
2.0
I C , COLLECTOR CURRENT (AMP)
I B , BASE CURRENT (AMP)
Figure 8. DC Current Gain
Figure 9. Collector Saturation Region
2.0
+2.5
1.8
T J = 25 ° C
+2.0
*APPLIES FOR I C /I B h FE @V CE 2.0V
2
1.6
+1.5
1.4
+1.0
+25 ° C to +150 ° C
1.2
+0.5
* q VC FOR V CE(sat)
1.0
V BE(sat) @ I C /I B = 10
0
-55 ° C to +25 ° C
0.8
-0.5
+25 ° C to +150 ° C
0.6
V BE @ V CE = 2.0 V
-1.0
-1.5
q VB FOR V BE
0.4
0.2
V CE(sat) @ I C /I B = 10
-2.0
-55 ° C to + 25 ° C
0
0.3
0.5
0.7 1.0
2.0 3.0
5.0
7.0
10
20
30
-2.5
0.3
0.5
0.7 1.0
2.0 3.0
5.0
7.0
10
20
30
I C , COLLECTOR CURRENT (AMP)
I C , COLLECTOR CURRENT (AMP)
Figure 10. “On” Voltages
Figure 11. Temperature Coefficients
10 2
10 1
T J = +150 ° C
T J = +150 ° C
V CE = 40 V
10 1
10 0
+100 ° C
+100 ° C
10 -1
10 0
10 -1
V CE = 40 V
10 -2
+25 ° C
+25 ° C
REVERSE
FORWARD
10 -2
10 -3
REVERSE
FORWARD
10 -3
+0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
+0.16
+0.08
0
-0.08
-0.16
-0.24
V BE , BASEEMITTER VOLTAGE (VOLTS)
V BE , BASEEMITTER VOLTAGE (VOLTS)
Figure 12. Collector Cut-Off Region
Figure 13. Base Cutoff Region
http://onsemi.com
5
+0.2
10 -4
23105137.005.png 23105137.006.png
Zgłoś jeśli naruszono regulamin