IRF1404.PDF

(196 KB) Pobierz
IRF1404.pmd
PD-91896F
IRF1404
Advanced Process Technology
HEXFET ® Power MOSFET
Ultra Low On-Resistance
D
Dynamic dv/dt Rating
V DSS = 40V
175°C Operating Temperature
Fast Switching
R DS(on) = 0.004
Fully Avalanche Rated
G
Automotive Qualified (Q101)
I D = 202A
S
Description
Seventh Generation HEXFET ® Power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance per
silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that
HEXFET power MOSFETs are well known for, provides
the designer with an extremely efficient and reliable
device for use in a wide variety of applications including
automotive.
The TO-220 package is universally preferred for all
automotive-commercial-industrial applications at power
dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
Max.
Units
I D @ T C = 25°C
Continuous Drain Current, V GS @ 10V
202
I D @ T C = 100°C
Continuous Drain Current, V GS @ 10V
143
A
I DM
Pulsed Drain Current
808
P D @T C = 25°C
Power Dissipation
333
W
Linear Derating Factor
2.2
W/°C
V GS
Gate-to-Source Voltage
± 20
V
E AS
Single Pulse Avalanche Energy
620
mJ
I AR
Avalanche Current
See Fig.12a, 12b, 15, 16
A
E AR
Repetitive Avalanche Energy
mJ
dv/dt
Peak Diode Recovery dv/dt
1.5
V/ns
T J
Operating Junction and
-55 to + 175
T STG
Storage Temperature Range
-55 to + 175
°C
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
Mounting Torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
Typ.
Max.
Units
R θ JC
Junction-to-Case
–––
0.45
R θ CS
Case-to-Sink, Flat, Greased Surface
0.50
–––
°C/W
R θ JA
Junction-to-Ambient
–––
62
www.irf.com
1
10/10/03
647851296.014.png 647851296.015.png 647851296.016.png
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V (BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V V GS = 0V, I D = 250µA
V (BR)DSS / T J Breakdown Voltage Temp. Coefficient ––– 0.039 ––– V/°C Reference to 25°C, I D = 1mA
R DS(on)
Static Drain-to-Source On-Resistance ––– 0.0035 0.004 V GS = 10V, I D = 121A
V GS(th)
Gate Threshold Voltage
2.0 ––– 4.0
V
V DS = 10V, I D = 250µA
g fs
Forward Transconductance
76
––– –––
S
V DS = 25V, I D = 121A
I DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V DS = 40V, V GS = 0V
––– ––– 250
V DS = 32V, V GS = 0V, T J = 150°C
I GSS
Gate-to-Source Forward Leakage
––– ––– 200
nA
V GS = 20V
Gate-to-Source Reverse Leakage
––– ––– -200
V GS = -20V
Q g
Total Gate Charge
––– 131 196
I D = 121A
Q gs
Gate-to-Source Charge
–––
36 –––
nC V DS = 32V
Q gd
Gate-to-Drain ("Miller") Charge
–––
37
56
V GS = 10V
t d(on)
Turn-On Delay Time
–––
17 –––
V DD = 20V
t r
Rise Time
––– 190 –––
ns
I D = 121A
t d(off)
Turn-Off Delay Time
–––
46 –––
R G = 2.5
t f
Fall Time
–––
33 –––
Between lead,
L D
Internal Drain Inductance
–––
4.5
–––
D
6mm (0.25in.)
from package
and center of die contact
nH
G
L S
Internal Source Inductance
–––
7.5
–––
S
C iss
Input Capacitance
––– 5669 –––
V GS = 0V
C oss
Output Capacitance
––– 1659 –––
pF V DS = 25V
C rss
Reverse Transfer Capacitance
––– 223 –––
ƒ = 1.0MHz, See Fig. 5
C oss
Output Capacitance
––– 6205 –––
V GS = 0V, V DS = 1.0V, ƒ = 1.0MHz
C oss
Output Capacitance
––– 1467 –––
V GS = 0V, V DS = 32V, ƒ = 1.0MHz
C oss eff.
Effective Output Capacitance
––– 2249 –––
V GS = 0V, V DS = 0V to 32V
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I S
Continuous Source Current
MOSFET symbol
D
––– –––
202
(Body Diode)
showing the
I SM
Pulsed Source Current
integral reverse
G
––– –––
808
(Body Diode)
p-n junction diode.
S
V SD
Diode Forward Voltage
––– ––– 1.5
V
T J = 25°C, I S = 121A, V GS = 0V
t rr
Reverse Recovery Time
––– 78 117
ns T J = 25°C, I F = 121A
Q rr
Reverse RecoveryCharge
––– 163 245
nC di/dt = 100A/µs
t on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L S +L D )
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
Pulse width 400µs; duty cycle 2%.
C oss eff. is a fixed capacitance that gives the same charging time
as C oss while V DS is rising from 0 to 80% V DSS
Starting T J = 25°C, L = 85 µ H
R G = 25 , I AS = 121A. (See Figure 12)
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
I SD 121A, di/dt 130A/µs, V DD V (BR)DSS ,
T J 175°C
2
www.irf.com
R D = 0.2
647851296.017.png 647851296.001.png
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
TOP
BOTTOM
BOTTOM
100
100
4.5V
10
4.5V
10
20µs PULSE WIDTH
T = 25 C
°
20µs PULSE WIDTH
T = 175 C
°
1
1
0.1
1
10
100
0.1
1
10
100
V , Drain-to-Source Voltage (V)
V , Drain-to-Source Voltage (V)
DS
DS
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.5
I =
202A
T = 25 C
J
°
2.0
T = 175 C
J
°
1.5
100
1.0
0.5
V = 25V
20µs PULSE WIDTH
DS
V =
10V
10
0.0
4
5
6
7
8
9
10
11
12
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
°
V , Gate-to-Source Voltage (V)
GS
T , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
3
J
J
D
GS
J
647851296.002.png 647851296.003.png
10000
20
I =
121A
V GS = 0V, f = 1 MHZ
C iss = C gs + C gd , C ds SHORTED
C rss = C gd
C oss = C ds + C gd
V = 32V
DS
V = 20V
8000
16
6000
Ciss
12
4000
Coss
8
2000
Crss
4
0
FOR TEST CIRCUIT
SEE FIGURE
1
10
100
13
0
0
50
100
150
200
V DS , Drain-to-Source Voltage (V)
Q , Total Gate Charge (nC)
G
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
10000
T = 175 C
J
°
OPERATION IN THIS AREA LIMITED
BY R DS(on)
100
1000
10us
10
100
100us
T = 25 C
J
°
1ms
1
10
10ms
T
C
= 25 °
°
T
= 175 C
J
V = 0 V
GS
Single Pulse
0.1
1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
1
10
100
V ,Source-to-Drain Voltage (V)
V , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
D
DS
SD
DS
647851296.004.png 647851296.005.png 647851296.006.png 647851296.007.png 647851296.008.png 647851296.009.png
220
200
LIMITED BY PACKAGE
180
160
+
-
140
120
≤ 1
100
≤ 0.1 %
80
Fig 10a. Switching Time Test Circuit
60
40
V DS
90%
20
0
25
50
75
100
125
150
175
T , Case Temperature ( C)
°
C
10%
V GS
Fig 9. Maximum Drain Current Vs.
Case Temperature
t d(on) t r
t d(off) t f
Fig 10b. Switching Time Waveforms
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
SINGLE PULSE
(THERMAL RESPONSE)
0.01
P
DM
0.01
1
2
Notes:
1. Duty factor D = t / t
2. Peak T = P
1 2
J
DM
x Z
thJC
+ T
C
0.001
0.00001
0.0001
0.001
0.01
0.1
t , Rectangular Pulse Duration (sec)
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
t
t
647851296.010.png 647851296.011.png 647851296.012.png 647851296.013.png
Zgłoś jeśli naruszono regulamin