5952-0292.pdf

(3678 KB) Pobierz
Agilent
Spectrum Analysis Basics
Application Note 150
935951013.039.png 935951013.040.png 935951013.041.png 935951013.042.png 935951013.001.png 935951013.002.png 935951013.003.png 935951013.004.png 935951013.005.png 935951013.006.png 935951013.007.png 935951013.008.png 935951013.009.png 935951013.010.png 935951013.011.png 935951013.012.png 935951013.013.png 935951013.014.png 935951013.015.png 935951013.016.png 935951013.017.png 935951013.018.png 935951013.019.png 935951013.020.png 935951013.021.png 935951013.022.png
 
Table of Contents
Chapter 1 – Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Frequency domain versus time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
What is a spectrum? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Why measure spectra? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Types of measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Types of signal analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Chapter 2 – Spectrum Analyzer Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
RF attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Low-pass filter or preselector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Tuning the analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
IF gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Resolving signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Residual FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Sweep time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Envelope detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Detector types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Sample detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Peak (positive) detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Negative peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Normal detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Average detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
EMI detectors: average and quasi-peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Averaging processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Time gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Chapter 3 – Digital IF Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
The all-digital IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Custom signal processing IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Additional video processing features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Frequency counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
More advantages of the all-digital IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Chapter 4 – Amplitude and Frequency Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Relative uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Absolute amplitude accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Improving overall uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Specifications, typical performance, and nominal values . . . . . . . . . . . . . . . . . . . . . . .53
The digital IF section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Frequency accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2
 
Table of Contents
— continued
Chapter 5 – Sensitivity and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Noise figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Preamplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Noise as a signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Preamplifier for noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Chapter 6 – Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Dynamic range versus internal distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Attenuator test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Dynamic range versus measurement uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Gain compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Display range and measurement range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Adjacent channel power measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Chapter 7 – Extending the Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Internal harmonic mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Amplitude calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Improved dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Pluses and minuses of preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
External harmonic mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Signal identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Chapter 8 – Modern Spectrum Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Application-specific measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Digital modulation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Saving and printing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Data transfer and remote instrument control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Firmware updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Calibration, troubleshooting, diagnostics, and repair . . . . . . . . . . . . . . . . . . . . . . . . . .108
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
3
 
Chapter 1
Introduction
This application note is intended to explain the fundamentals of swept-tuned,
superheterodyne spectrum analyzers and discuss the latest advances in
spectrum analyzer capabilities.
At the most basic level, the spectrum analyzer can be described as a
frequency-selective, peak-responding voltmeter calibrated to display the
rms value of a sine wave. It is important to understand that the spectrum
analyzer is not a power meter, even though it can be used to display power
directly. As long as we know some value of a sine wave (for example, peak
or average) and know the resistance across which we measure this value,
we can calibrate our voltmeter to indicate power. With the advent of digital
technology, modern spectrum analyzers have been given many more
capabilities. In this note, we shall describe the basic spectrum analyzer
as well as the many additional capabilities made possible using digital
technology and digital signal processing.
Frequency domain versus time domain
Before we get into the details of describing a spectrum analyzer, we might
first ask ourselves: “Just what is a spectrum and why would we want to
analyze it?” Our normal frame of reference is time. We note when certain
events occur. This includes electrical events. We can use an oscilloscope to
view the instantaneous value of a particular electrical event (or some other
event converted to volts through an appropriate transducer) as a function
of time. In other words, we use the oscilloscope to view the waveform of a
signal in the time domain.
Fourier 1 theory tells us any time-domain electrical phenomenon is made
up of one or more sine waves of appropriate frequency, amplitude, and phase.
In other words, we can transform a time-domain signal into its frequency-
domain equivalent. Measurements in the frequency domain tell us how
much energy is present at each particular frequency. With proper filtering,
a waveform such as in Figure 1-1 can be decomposed into separate sinusoidal
waves, or spectral components, which we can then evaluate independently.
Each sine wave is characterized by its amplitude and phase. If the signal
that we wish to analyze is periodic, as in our case here, Fourier says that the
constituent sine waves are separated in the frequency domain by 1/T, where
T is the period of the signal 2 .
1. Jean Baptiste Joseph Fourier, 1768-1830.
A French mathematician and physicist who
discovered that periodic functions can be expanded
into a series of sines and cosines.
2. If the time signal occurs only once, then T is infinite,
and the frequency representation is a continuum of
sine waves.
Figure 1-1. Complex time-domain signal
4
935951013.023.png 935951013.024.png
Some measurements require that we preserve complete information about the
signal - frequency, amplitude and phase. This type of signal analysis is called
vector signal analysis , which is discussed in Application Note 150-15, Vector
Signal Analysis Basics . Modern spectrum analyzers are capable of performing
a wide variety of vector signal measurements. However, another large group of
measurements can be made without knowing the phase relationships among
the sinusoidal components. This type of signal analysis is called spectrum
analysis . Because spectrum analysis is simpler to understand, yet extremely
useful, we will begin this application note by looking first at how spectrum
analyzers perform spectrum analysis measurements, starting in Chapter 2.
Theoretically, to make the transformation from the time domain to the frequency
domain, the signal must be evaluated over all time, that is, over ± infinity.
However, in practice, we always use a finite time period when making a
measurement. Fourier transformations can also be made from the frequency
to the time domain. This case also theoretically requires the evaluation of
all spectral components over frequencies to ± infinity. In reality, making
measurements in a finite bandwidth that captures most of the signal energy
produces acceptable results. When performing a Fourier transformation on
frequency domain data, the phase of the individual components is indeed
critical. For example, a square wave transformed to the frequency domain
and back again could turn into a sawtooth wave if phase were not preserved.
What is a spectrum?
So what is a spectrum in the context of this discussion? A spectrum is a
collection of sine waves that, when combined properly, produce the
time-domain signal under examination. Figure 1-1 shows the waveform of a
complex signal. Suppose that we were hoping to see a sine wave. Although
the waveform certainly shows us that the signal is not a pure sinusoid, it
does not give us a definitive indication of the reason why. Figure 1-2 shows
our complex signal in both the time and frequency domains. The frequency-
domain display plots the amplitude versus the frequency of each sine wave
in the spectrum. As shown, the spectrum in this case comprises just two sine
waves. We now know why our original waveform was not a pure sine wave.
It contained a second sine wave, the second harmonic in this case. Does this
mean we have no need to perform time-domain measurements? Not at all.
The time domain is better for many measurements, and some can be made
only in the time domain. For example, pure time-domain measurements
include pulse rise and fall times, overshoot, and ringing.
Frequency domain
measurements
Time domain
measurements
Figure 1-2. Relationship between time and frequency domain
5
935951013.025.png 935951013.026.png 935951013.027.png 935951013.028.png 935951013.029.png 935951013.030.png 935951013.031.png 935951013.032.png 935951013.033.png 935951013.034.png 935951013.035.png 935951013.036.png 935951013.037.png 935951013.038.png
Zgłoś jeśli naruszono regulamin