
    
    



    
            
                
                    
                        
                            
                                
                                    
                                    IEEE - Finding Patterns in Three Dimensional Graphs Algorithms and Applications to Scientific Data Mining.pdf

                                    (561 KB)
                                    
                                        Pobierz
                                

                                
                                    
                                    
                                        








	
		
			
				
					
						IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002
					
				

			

			
				
					
						731
					
				

			

			
				
					
						Finding Patterns in
					
				

				
					
						Three-Dimensional Graphs: Algorithms and
					
				

				
					
						Applications to Scientific Data Mining
					
				

			

			
				
					
						Xiong Wang, Member, IEEE, Jason T.L. Wang, Member, IEEE,
					
				

				
					
						Dennis Shasha, Bruce A. Shapiro, Isidore Rigoutsos, Member, IEEE, and Kaizhong Zhang
					
				

			

			
				
					
						AbstractÐThis paper presents a method for finding patterns in 3D graphs. Each node in a graph is an undecomposable or atomic unit
					
				

				
					
						and has a label. Edges are links between the atomic units. Patterns are rigid substructures that may occur in a graph after allowing for
					
				

				
					
						an arbitrary number of whole-structure rotations and translations as well as a small number (specified by the user) of edit operations in
					
				

				
					
						the patterns or in the graph. (When a pattern appears in a graph only after the graph has been modified, we call that appearance
					
				

				
					
						ªapproximate occurrence.º) The edit operations include relabeling a node, deleting a node and inserting a node. The proposed method
					
				

				
					
						is based on the geometric hashing technique, which hashes node-triplets of the graphs into a 3D table and compresses the label-
					
				

				
					
						triplets in the table. To demonstrate the utility of our algorithms, we discuss two applications of them in scientific data mining. First, we
					
				

				
					
						apply the method to locating frequently occurring motifs in two families of proteins pertaining to RNA-directed DNA Polymerase and
					
				

				
					
						Thymidylate Synthase and use the motifs to classify the proteins. Then, we apply the method to clustering chemical compounds
					
				

				
					
						pertaining to aromatic, bicyclicalkanes, and photosynthesis. Experimental results indicate the good performance of our algorithms and
					
				

				
					
						high recall and precision rates for both classification and clustering.
					
				

			

			
				
					
						Index TermsÐKDD, classification and clustering, data mining, geometric hashing, structural pattern discovery, biochemistry,
					
				

				
					
						medicine.
					
				

			

			
				
					
						æ
					
				

			

			
				
					
						TRUCTURAL 
					
					
						pattern discovery finds many applications in
					
				

				
					
						natural sciences, computer-aided design, and image
					
				

				
					
						processing [8], [33]. For instance, detecting repeatedly
					
				

				
					
						occurring structures in molecules can help biologists to
					
				

				
					
						understand functions of the molecules. In these domains,
					
				

				
					
						molecules are often represented by 3D graphs. The tertiary
					
				

				
					
						structures of proteins, for example, are 3D graphs [5], [9],
					
				

				
					
						[18]. As another example, chemical compounds are also
					
				

				
					
						3D graphs [21].
					
				

				
					
						In this paper, we study a pattern discovery problem for
					
				

				
					
						graph data. Specifically, we propose a geometric hashing
					
				

				
					
						technique to find frequently occurring substructures in a set
					
				

				
					
						of 3D graphs. Our study is motivated by recent advances in
					
				

			

			
				
					
						the data mining field, where automated discovery of
					
				

				
					
						patterns, classification and clustering rules is one of the
					
				

				
					
						main tasks. We establish a framework for structural pattern
					
				

				
					
						discovery in the graphs and apply our approach to
					
				

				
					
						classifying proteins and clustering compounds. While the
					
				

				
					
						domains chosen here focus on biochemistry, our approach
					
				

				
					
						can be generalized to other applications where graph data
					
				

				
					
						occur commonly.
					
				

			

			
				
					
						1.1 3D Graphs
					
				

				
					
						Each node of the graphs we are concerned with is an
					
				

				
					
						undecomposable or atomic unit and has a 3D coordinate.
					
					
						1
					
				

				
					
						Each node has a label, which is not necessarily unique in a
					
				

				
					
						graph. Node labels are chosen from a domain-dependent
					
				

				
					
						alphabet . In chemical compounds, for example, the
					
				

				
					
						alphabet includes the names of all atoms. A node can be
					
				

				
					
						identified by a unique, user-assigned number in the graph.
					
				

				
					
						Edges in the graph are links between the atomic units. In
					
				

				
					
						the paper, we will consider 3D graphs that are connected.
					
				

				
					
						For disconnected graphs, we consider their connected
					
				

				
					
						components [16].
					
				

				
					
						A graph can be divided into one or more rigid
					
				

				
					
						substructures. A rigid substructure is a subgraph in which
					
				

				
					
						the relative positions of the nodes in the substructure are
					
				

				
					
						fixed, under some set of conditions of interest. Note that the
					
				

				
					
						rigid substructure as a whole can be rotated (we refer to this
					
				

				
					
						as a ªwhole-structureº rotation or simply a rotation when
					
				

				
					
						the context is clear). Thus, the relative position of a node in
					
				

			

			
				
					
						. X. Wang is with the Department of Computer Science, California State
					
				

				
					
						University, Fullerton, CA 92834. E-mail: wang@ecs.fullerton.edu.
					
				

				
					
						. J.T.L. Wang is with the Department of Computer and Information Science,
					
				

				
					
						New Jersey Institute of Technology, University Heights, Newark, NJ
					
				

				
					
						07102. E-mail: jason@cis.njit.edu.
					
				

				
					
						. D. Shasha is with the Courant Institute of Mathematical Sciences, New
					
				

				
					
						York University, 251 Mercer St., New York, NY 10012.
					
				

				
					
						E-mail: shasha@cs.nyu.edu.
					
				

				
					
						. B.A. Shapiro is with the Laboratory of Experimental and Computational
					
				

				
					
						Biology, Division of Basic Sciences, National Cancer Institutes, Frederick,
					
				

				
					
						MD 21702. E-mail: bshapiro@ncifcrf.gov.
					
				

				
					
						. I. Rigoutsos is with the IBM T.J. Watson Research Center, Yorktown
					
				

				
					
						Heights, NY 10598. E-mail: rigoutso@us.ibm.com.
					
				

				
					
						. K. Zhang is with the Department of Computer Science, The University of
					
				

				
					
						Western Ontario, London, Ontario, Canada N6A 5B7.
					
				

				
					
						E-mail: kzhang@csd.uwo.ca.
					
				

				
					
						Manuscript received 19 May 1999; revised 18 Oct. 2000; accepted 18 Jan.
					
				

				
					
						2001; posted to Digital Library 7 Sept. 2001.
					
				

				
					
						For information on obtaining reprints of this article, please send e-mail to:
					
				

				
					
						tkde@computer.org, and reference IEEECS Log Number 109849.
					
				

			

			
				
					
						1. More precisely, the 3D coordinate indicates the location of the center of
					
				

				
					
						the atomic unit.
					
				

			

			
				
					
						1041-4347/02/$17.00 ß 2002 IEEE
					
				

			

			
				
					
						1
					
					
						NTRODUCTION
					
				

				
					
						S
					
				

			

			
			
		

		
			
				
					
						732
					
				

			

			
				
					
						IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002
					
				

			

			
				
					
						TABLE 1
					
				

				
					
						Identifiers, Labels and Global Coordinates of the
					
				

				
					
						Nodes of the Graph in Fig. 1
					
				

			

			
				
					
						Fig. 1. A graph G.
					
				

			

			
				
					
						the substructure and a node outside the substructure can be
					
				

				
					
						changed under the rotation. The precise definition of a
					
				

				
					
						ªsubstructureº is application dependent. For example, in
					
				

				
					
						chemical compounds, a ring is often a rigid substructure.
					
				

				
					
						Example 1. To illustrate rigid substructures in a graph,
					
				

				
					
						consider the graph G in Fig. 1. Each node is associated
					
				

				
					
						with a unique number, with its label being enclosed in
					
				

				
					
						parentheses. Table 1 shows the 3D coordinates of the
					
				

				
					
						nodes in the graph with respect to the Global Coordinate
					
				

				
					
						Frame. We divide the graph into two rigid substructures:
					
				

				
					
						Str
					
					
						0 
					
					
						and Str
					
					
						1
					
					
						. Str
					
					
						0 
					
					
						consists of nodes numbered 0, 1, 2, 3,
					
				

				
					
						4, and 5 as, well as, edges connecting the nodes (Fig. 2a).
					
				

				
					
						Str
					
					
						1 
					
					
						consists of nodes numbered 6, 7, 8, 9, and 10 as, well
					
				

				
					
						as, edges connecting them (Fig. 2b). Edges in the rigid
					
				

				
					
						substructures are represented by boldface links. The
					
				

				
					
						edge f5; 6g connecting the two rigid substructures is
					
				

				
					
						represented by a lightface link, meaning that the two
					
				

				
					
						substructures are rotatable with respect to each other
					
				

				
					
						around the edge.
					
					
						2 
					
					
						Note that a rigid substructure is not
					
				

				
					
						necessarily complete. For example, in Fig. 2a, there is no
					
				

				
					
						edge connecting the node numbered 1 and the node
					
				

				
					
						numbered 3.
					
				

				
					
						We attach a local coordinate frame SF
					
					
						0 
					
					
						(SF
					
					
						1
					
					
						, respec-
					
				

				
					
						tively) to substructure Str
					
					
						0 
					
					
						(Str
					
					
						1
					
					
						, respectively). For instance,
					
				

				
					
						let us focus on the substructure Str
					
					
						0 
					
					
						in Fig. 2a. We attach a
					
				

				
					
						local coordinate frame to Str
					
					
						0 
					
					
						whose origin is the node
					
				

				
					
						numbered 0. This local coordinate frame is represented by
					
				

				
					
						three basis points P
					
					
						b
					
					
						1 
					
					
						, P
					
					
						b
					
					
						2 
					
					
						,andP
					
					
						b
					
					
						3 
					
					
						,withcoordinates
					
				

				
					
						P
					
					
						b
					
					
						1
					
					
						x
					
					
						0
					
					
						;y
					
					
						0
					
					
						;z
					
					
						0
					
					
						, P
					
					
						b
					
					
						2
					
					
						x
					
					
						0 
					
					
						 1;y
					
					
						0
					
					
						;z
					
					
						0
					
					
						, and P
					
					
						b
					
					
						3
					
					
						x
					
					
						0
					
					
						;y
					
					
						0 
					
					
						 1;z
					
					
						0
					
					
						, re-
					
				

				
					
						spectively. The origin is P
					
					
						b
					
					
						1 
					
					
						and the three basis vectors are
					
				

				
					
						V
					
					
						b
					
					
						1
					
					
						;b
					
					
						2 
					
					
						, V
					
					
						b
					
					
						1
					
					
						;b
					
					
						3 
					
					
						, and V
					
					
						b
					
					
						1
					
					
						;b
					
					
						2 
					
					
						 V
					
					
						b
					
					
						1
					
					
						;b
					
					
						3 
					
					
						. Here, V
					
					
						b
					
					
						1
					
					
						;b
					
					
						2 
					
					
						represents the
					
				

				
					
						vector starting at point P
					
					
						b
					
					
						1 
					
					
						and ending at point P
					
					
						b
					
					
						2 
					
					
						. V
					
					
						b
					
					
						1
					
					
						;b
					
					
						2 
					
					
						
					
				

				
					
						V
					
					
						b
					
					
						1
					
					
						;b
					
					
						3 
					
					
						stands for the cross product of the two corresponding
					
				

				
					
						vectors. We refer to this coordinate frame as Substructure
					
				

				
					
						Frame 0, or SF
					
					
						0
					
					
						. Note that the basis vectors of SF
					
					
						0 
					
					
						are
					
				

				
					
						orthonormal. That is, the length of each vector is 1 and the
					
				

				
					
						angle between any two basis vectors has 90 degrees. Also
					
				

				
					
						note that, for any node numbered i in the substructure Str
					
					
						0
					
				

				
					
						with global coordinate P
					
					
						i
					
					
						x
					
					
						i
					
					
						;y
					
					
						i
					
					
						;z
					
					
						i
					
					
						, we can find a local
					
				

				
					
						coordinate of the node i with respect to SF
					
					
						0
					
					
						, denoted P
					
					
						0
					
					
						i 
					
					
						,
					
				

				
					
						where
					
				

			

			
				
					
						1.2 Patterns in 3D Graphs
					
				

				
					
						We consider a pattern to be a rigid substructure that may
					
				

				
					
						occur in a graph after allowing for an arbitrary number of
					
				

				
					
						rotations and translations as well as a small number
					
				

				
					
						(specified by the user) of edit operations in the pattern or
					
				

				
					
						in the graph. We allow three types of edit operations:
					
				

				
					
						relabeling a node, deleting a node and inserting a node.
					
				

				
					
						Relabeling a node v means to change the label of v to any
					
				

				
					
						valid label that differs from its original label. Deleting a
					
				

				
					
						node v from a graph means to remove the corresponding
					
				

				
					
						atomic unit from the 3D Euclidean space and make the
					
				

				
					
						edges touching v connect with one of its neighbors v
					
					
						0
					
					
						.
					
				

				
					
						Inserting a node v into a graph means to add the
					
				

				
					
						corresponding atomic unit to the 3D Euclidean space and
					
				

				
					
						make a node v
					
					
						0 
					
					
						and a subset of its neighbors become the
					
				

				
					
						neighbors of v.
					
					
						3
					
				

				
					
						We say graph G matches graph G
					
					
						0 
					
					
						with n mutations if by
					
				

				
					
						applying an arbitrary number of rotations and translations
					
				

				
					
						as well as n node insert, delete or relabeling operations, 1) G
					
				

				
					
						and G
					
					
						0 
					
					
						have the same size,
					
					
						4 
					
					
						2) the nodes in G geometrically
					
				

				
					
						match those in G
					
					
						0
					
					
						, i.e., they have coinciding 3D coordinates,
					
				

				
					
						and 3) for each pair of geometrically matching nodes, they
					
				

				
					
						have the same label. A substructure P approximately occurs
					
				

				
					
						in a graph G (or G approximately contains P) within
					
				

				
					
						n mutations if P matches some subgraph of G with
					
				

				
					
						n mutations or fewer where n is chosen by the user.
					
				

				
					
						Example 2. To illustrate patterns in graphs, consider the set
					
				

				
					
						S of three graphs in Fig. 3a. Suppose only exactly
					
				

				
					
						coinciding substructures (without mutations) occurring
					
				

			

			
				
					
						3. Here, exactly which subset of the neighbors is chosen is unimportant,
					
				

				
					
						as the proposed geometric hashing technique hashes nodes only, ignoring
					
				

				
					
						edges among the nodes. Notice that when a node v is inserted or deleted,
					
				

				
					
						the nodes surrounding v do not move, i.e., their coordinates remain the
					
				

				
					
						same. Note also that we do not allow multiple edit operations to be applied
					
				

				
					
						to the same node. Thus, for example, inserting a node with label m followed
					
				

				
					
						by relabeling it to n is considered as inserting a node with label n. The three
					
				

				
					
						edit operations are extensions of the edit operations on sequences; they arise
					
				

				
					
						naturally in graph editing [10] and molecule evolution [25]. As shown in
					
				

				
					
						Section 4, based on these edit operations, our algorithm finds useful
					
				

				
					
						patterns that can be used to classify and cluster 3D molecules effectively.
					
				

				
					
						4. The size of a graph is defined to be the number of nodes in the graph,
					
				

				
					
						since our geometric hashing technique considers nodes only. Furthermore,
					
				

				
					
						in our target applications, e.g., chemistry, nodes are atomic units and
					
				

				
					
						determine the size of a compound. Edges are links between the nodes and
					
				

				
					
						have a different meaning from the atomic units; as a consequence, we
					
				

				
					
						exclude the edges from the size definition.
					
				

			

			
				
					
						P
					
					
						0
					
					
						i 
					
					
						 V
					
					
						b
					
					
						1
					
					
						;i 
					
					
						x
					
					
						i 
					
					
						ÿx
					
					
						0
					
					
						;y
					
					
						i 
					
					
						ÿy
					
					
						0
					
					
						;z
					
					
						i 
					
					
						ÿz
					
					
						0
					
					
						: 1
					
				

			

			
				
					
						2. Such an edge is referred to as a rotatable edge. If two rigid
					
				

				
					
						substructures cannot be rotated with respect to each other around the edge
					
				

				
					
						connecting them, that edge is a nonrotatable edge.
					
				

			

			
			
		

		
			
				
					
						WANG ET AL.: FINDING PATTERNS IN THREE-DIMENSIONAL GRAPHS: ALGORITHMS AND APPLICATIONS TO SCIENTIFIC DATA MINING
					
				

			

			
				
					
						733
					
				

			

			
				
					
						quality of the patterns by using them to classify the
					
				

				
					
						compounds. Here, we extend the work in [35] by
					
				

			

			
				
					
						Fig. 2. The rigid substructures of the graph in Fig. 1.
					
				

			

			
				
					
						1. 
					
					
						considering more general edit operations including
					
				

				
					
						node insert, delete, and relabeling,
					
				

				
					
						2. 
					
					
						presenting the theoretical foundation and evaluating
					
				

				
					
						the performance and efficiency of our pattern-
					
				

				
					
						finding algorithm,
					
				

				
					
						3. 
					
					
						applying the discovered patterns to classifying
					
				

				
					
						3D proteins, which are much larger and more
					
				

				
					
						complicated in topology than chemical compounds,
					
				

				
					
						and
					
				

				
					
						4. 
					
					
						presenting a technique to cluster 3D graphs based on
					
				

				
					
						the patterns occurring in them.
					
				

				
					
						Specifically, we conducted two experiments. In the first
					
				

				
					
						experiment, we applied the proposed method to locating
					
				

				
					
						frequently occurring motifs (substructures) in two families
					
				

				
					
						of proteins pertaining to RNA-directed DNA Polymerase
					
				

				
					
						and Thymidylate Synthase, and used the motifs to classify
					
				

				
					
						the proteins. Experimental results showed that our method
					
				

				
					
						achieved a 96.4 percent precision rate. In the second
					
				

				
					
						experiment, we applied our pattern-finding algorithm to
					
				

				
					
						discovering frequently occurring patterns in chemical
					
				

				
					
						compounds chosen from the Merck Index pertaining to
					
				

				
					
						aromatic, bicyclicalkanes and photosynthesis. We then used
					
				

				
					
						the patterns to cluster the compounds. Experimental results
					
				

				
					
						showed that our method achieved 99 percent recall and
					
				

				
					
						precision rates.
					
				

				
					
						The rest of the paper is organized as follows: Section 2
					
				

				
					
						presents the theoretical framework of our approach and
					
				

			

			
				
					
						in at least two graphs and having size greater than three
					
				

				
					
						are considered as ªpatterns.º Then, S contains one
					
				

				
					
						pattern shown in Fig. 3b. If substructures having size
					
				

				
					
						greater than four and approximately occurring in all the
					
				

				
					
						three graphs within one mutation (i.e., one node delete,
					
				

				
					
						insert, or relabeling is allowed in matching a substruc-
					
				

				
					
						ture with a graph) are considered as ªpatterns,º then S
					
				

				
					
						contains one pattern shown in Fig. 3c.
					
				

				
					
						Our strategy to find the patterns in a set of 3D graphs is
					
				

				
					
						to decompose the graphs into rigid substructures and, then,
					
				

				
					
						use geometric hashing [14] to organize the substructures
					
				

				
					
						and, then, to find the frequently occurring ones. In [35], we
					
				

				
					
						applied the approach to the discovery of patterns in
					
				

				
					
						chemical compounds under a restricted set of edit opera-
					
				

				
					
						tions including node insert and node delete, and tested the
					
				

			

			
				
					
						Fig. 3. (a) The set S of three graphs, (b) the pattern exactly occurring in two graphs in S, and (c) the pattern approximately occurring, within one
					
				

				
					
						mutation, in all the three graphs.
					
				

			

			
			
		

		
			
				
					
						734
					
				

			

			
				
					
						IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002
					
				

			

			
				
					
						describes the pattern-finding algorithm in detail. Section 3
					
				

				
					
						evaluates the performance and efficiency of the pattern-
					
				

				
					
						finding algorithm. Section 4 describes the applications of
					
				

				
					
						our approach to classifying proteins and clustering com-
					
				

				
					
						pounds. Section 5 discusses related work. Section 6
					
				

				
					
						concludes the paper.
					
				

			

			
				
					
						
					
				

				
					
						 20 node-triplets:
					
				

			

			
				
					
						There are several alternative ways to decompose
					
				

				
					
						3D graphs into rigid substructures, depending on the
					
				

				
					
						application at hand and the nature of the graphs. For the
					
				

				
					
						purposes of exposition, we describe our pattern-finding
					
				

				
					
						algorithm based on a partitioning strategy. Our approach
					
				

				
					
						assumes a notion of atomic unit which is the lowest level of
					
				

				
					
						description in the case of interest. Intuitively, atomic units
					
				

				
					
						are fundamental building elements, e.g., atoms in a
					
				

				
					
						molecule. Edges arise as bonds between atomic units. We
					
				

				
					
						break a graph into maximal size rigid substructures (recall
					
				

				
					
						that a rigid substructure is a subgraph in which the relative
					
				

				
					
						positions of nodes in the substructure are fixed). To
					
				

				
					
						accomplish this, we use an approach similar to [16] that
					
				

				
					
						employs a depth-first search algorithm, referred to as DFB,
					
				

				
					
						to find blocks in a graph.
					
				

			

			
				
					
						2P
					
					
						ATTERN
					
					
						-F
					
					
						INDING 
					
					
						A
					
					
						LGORITHM
					
				

				
					
						2.1 Terminology
					
				

				
					
						Let S be a set of 3D graphs. The occurrence number of a
					
				

				
					
						pattern P is the number of graphs in S that approxi-
					
				

				
					
						mately contain P within the allowed number of muta-
					
				

				
					
						tions. Formally, the occurrence number of a pattern P
					
				

				
					
						with respect to mutation d and set S, denoted
					
				

				
					
						occur no
					
					
						d
					
					
						S
					
					
						P,isk if there are k graphs in S that contain
					
				

				
					
						P within d mutations. For example, consider Fig. 3 again.
					
				

				
					
						Let S contain the three graphs in Fig. 3a. Then,
					
				

				
					
						occur no
					
					
						0
					
					
						S
					
					
						P
					
					
						1
					
					
						 =2;occur no
					
					
						1
					
					
						S
					
					
						P
					
					
						2
					
					
						 =3.
					
				

				
					
						Given a set S of 3D graphs, our algorithm finds all the
					
				

				
					
						patterns P where P approximately occurs in at least
					
				

				
					
						Occur graphs in S within the allowed number of mutations
					
				

				
					
						Mut and jPj Size, where jPj represents the size, i.e., the
					
				

				
					
						number of nodes, of the pattern P.(Mut, Occur, and Size
					
				

				
					
						are user-specified parameters.) One can use the patterns in
					
				

				
					
						several ways. For example, biologists or chemists may
					
				

				
					
						evaluate whether the patterns are significant; computer
					
				

				
					
						scientists may use the patterns to classify or cluster
					
				

				
					
						molecules as demonstrated in Section 4.
					
				

				
					
						Our algorithm proceeds in two phases to search for the
					
				

				
					
						patterns: 1) find candidate patterns from the graphs in S;
					
				

				
					
						and 2) calculate the occurrence numbers of the candidate
					
				

				
					
						patterns to determine which of them satisfy the user-
					
				

				
					
						specified requirements. We describe each phase in turn
					
				

				
					
						below.
					
				

			

			
				
					
						The DFB works by traversing the
					
				

				
					
						graph in a depth-first order and collecting nodes belonging
					
				

				
					
						to a block during the traversal, as illustrated in the example
					
				

				
					
						below. Each block is a rigid substructure. We merge two
					
				

				
					
						rigid substructures B
					
					
						1 
					
					
						and B
					
					
						2 
					
					
						if they are not rotatable with
					
				

				
					
						respect to each other, that is, the relative position of a node
					
				

				
					
						n
					
					
						1 
					
					
						2 B
					
					
						1 
					
					
						and a node n
					
					
						2 
					
					
						2 B
					
					
						2 
					
					
						is fixed. The algorithm
					
				

				
					
						maintains a stack, denoted STK, which keeps the rigid
					
				

				
					
						substructures being merged. Fig. 4 shows the algorithm,
					
				

				
					
						which outputs a set of rigid substructures of a graph G.We
					
				

				
					
						then throw away the substructures P where jPj < Size. The
					
				

				
					
						remaining substructures constitute the candidate patterns
					
				

				
					
						generated from G. This pattern-generation algorithm runs
					
				

				
					
						in time linearly proportional to the number of edges in G.
					
				

				
					
						Example 3. We use the graph in Fig. 5 to illustrate how the
					
				

				
					
						Find_Rigid_Substructures algorithm in Fig. 4 works.
					
				

				
					
						Rotatable edges in the graph are represented by lightface
					
				

				
					
						links; nonrotatable edges are represented by boldface
					
				

				
					
						links. Initially, the stack STK is empty. We invoke DFB
					
				

				
					
						to locate the first block (Step 4). DFB begins by visiting
					
				

				
					
						the node numbered 0. Following the depth-first search,
					
				

				
					
						DFB then visits the nodes numbered 1, 2, and 5. Next,
					
				

				
					
						DFB may visit the node numbered 6 or 4. Without loss of
					
				

				
					
						generality, assume DFB visits the node numbered 6 and,
					
				

				
					
						then, the nodes numbered 10, 11, 13, 14, 15, 16, 18, and
					
				

				
					
						17, in that order. Then, DFB visits the node numbered 14,
					
				

				
					
						and realizes that this node has been visited before. Thus,
					
				

				
					
						DFB goes back to the node numbered 17, 18, etc., until it
					
				

				
					
						returns to the node numbered 14. At this point, DFB
					
				

				
					
						identifies the first block, B
					
					
						1
					
					
						, which includes nodes
					
				

				
					
						numbered 14, 15, 16, 17, and 18. Since the stack STK is
					
				

				
					
						empty now, we push B
					
					
						1 
					
					
						into STK (Step 7).
					
				

				
					
						In iteration 2, we call DFB again to find the next block
					
				

				
					
						(Step 4). DFB returns the nonrotatable edge f13; 14g as a
					
				

				
					
						block, denoted B
					
					
						2
					
					
						.
					
					
						6 
					
					
						The block is pushed into STK
					
				

				
					
						(Step 7). In iteration 3, DFB locates the block B
					
					
						3
					
					
						, which
					
				

				
					
						includes nodes numbered 10, 11, 12, and 13 (Step 4).
					
				

				
					
						Since B
					
					
						3 
					
					
						and the top entry of the stack, B
					
					
						2 
					
					
						are not
					
				

				
					
						rotatable with respect to each other, we push B
					
					
						3 
					
					
						into
					
				

			

			
				
					
						5
					
				

			

			
				
					
						2.2 Phase 1 of the Algorithm
					
				

				
					
						In phase 1 of the algorithm, we decompose the graphs into
					
				

				
					
						rigid substructures. Dividing a graph into substructures is
					
				

				
					
						necessary for two reasons. First, in dealing with some
					
				

				
					
						molecules such as chemical compounds in which there may
					
				

				
					
						exist two substructures that are rotatable with respect to
					
				

				
					
						each other, any graph containing the two substructures is
					
				

				
					
						not rigid. As a result, we decompose the graph into
					
				

				
					
						substructures having no rotatable components and consider
					
				

				
					
						the substructures separately. Second, our algorithm hashes
					
				

				
					
						node-triplets within rigid substructures into a 3D table.
					
				

				
					
						When a graph as a whole is too large, as in the case of
					
				

				
					
						proteins, considering all combinations of three nodes in the
					
				

				
					
						graph may become prohibitive. Consequently, decompos-
					
				

				
					
						ing the graph into substructures and hashing node-triplets
					
				

				
					
						of the substructures can increase efficiency. For example,
					
				

				
					
						consider a graph of 20 nodes. There are
					
				

			

			
				
					
						
					
				

				
					
						 1140 node-triplets:
					
				

			

			
				
					
						5. A block is a maximal subgraph that has no cut-vertices. A cut-vertex of
					
				

				
					
						a graph is one whose removal results in dividing the graph into multiple,
					
				

				
					
						disjointed subgraphs [16].
					
				

				
					
						6. In practice, in graph representations for molecules, one uses different
					
				

				
					
						notation to distinguish nonrotatable edges from rotatable edges. For
					
				

				
					
						example, in chemical compounds, a double bond is nonrotatable. The
					
				

				
					
						different notation helps the algorithm to determine the types of edges.
					
				

			

			
				
					
						On the other hand, if we decompose the graph into five
					
				

				
					
						substructures, each having four nodes, then there are only
					
				

			

			
				
					
						5  
					
					
						4
					
				

				
					
						3
					
				

			

			
				
					
						20
					
				

				
					
						3
					
				

			

			
			
		

		
			
				
					
						WANG ET AL.: FINDING PATTERNS IN THREE-DIMENSIONAL GRAPHS: ALGORITHMS AND APPLICATIONS TO SCIENTIFIC DATA MINING
					
				

			

			
				
					
						735
					
				

			

			
				
					
						Fig. 4. Algorithm for finding rigid substructures in a graph.
					
				

			

			
				
					
						STK (Step 7). In iteration 4, we continue to call DFB and
					
				

				
					
						get the single edge f6; 10g as the next block, B
					
					
						4 
					
					
						(Step 4).
					
				

				
					
						Since f6; 10g is rotatable and the stack STK is nonempty,
					
				

				
					
						we pop out all nodes in STK, merge them and output
					
				

				
					
						the rigid substructure containing nodes numbered 10, 11,
					
				

				
					
						12, 13, 14, 15, 16, 17, 18 (Step 9). We then push B
					
					
						4 
					
					
						into
					
				

				
					
						STK (Step 10).
					
				

				
					
						In iteration 5, DFB visits the node numbered 7 and,
					
				

				
					
						then, 8 from which DFB goes back to the node numbered
					
				

				
					
						7. It returns the single edge f7; 8g as the next block, B
					
					
						5
					
				

				
					
						(Step 4). Since f7; 8g is connected to the current top entry
					
				

				
					
						of STK, f6; 10g, via a rotatable edge f6; 7g, we pop out
					
				

				
					
						f6; 10g, which itself becomes a rigid substructure (Step 9).
					
				

				
					
						We then push f7; 8g into STK (Step 10). In iteration 6,
					
				

				
					
						DFB returns the single edge f7; 9g as the next block, B
					
					
						6
					
				

				
					
						(Step 4). Since B
					
					
						6 
					
					
						and the current top entry of STK, B
					
					
						5 
					
					
						=
					
				

				
					
						f7; 8g, are not rotatable with respect to each other, we
					
				

				
					
						push B
					
					
						6 
					
					
						into STK (Step 7). In iteration 7, DFB goes back
					
				

				
					
						from the node numbered 7 to the node numbered 6 and
					
				

				
					
						returns the single edge f6; 7g as the next block, B
					
					
						7
					
				

				
					
						(Step 4). Since f6; 7g is rotatable, we pop out all nodes in
					
				

				
					
						STK, merge them and output the resulting rigid
					
				

				
					
						substructure containing nodes numbered 7, 8, and 9
					
				

				
					
						(Step 9). We then push B
					
					
						7 
					
					
						= f6; 7g into STK (Step 10).
					
				

				
					
						In iteration 8, DFB returns the block B
					
					
						8 
					
					
						= f5; 6g
					
				

				
					
						(Step 4). Since f5; 6g and f6; 7g are both rotatable, we pop
					
				

				
					
						out f6; 7g to form a rigid substructure (Step 9). We then
					
				

				
					
						push B
					
					
						8 
					
					
						into STK (Step 10). In iteration 9, DFB returns
					
				

				
					
						the block B
					
					
						9 
					
					
						containing nodes numbered 0, 1, 2, 3, 4, and
					
				

				
					
						5 (Step 4). Since the current top entry of STK, B
					
					
						8 
					
					
						= f5; 6g,
					
				

			

			
				
					
						is rotatable with respect to B
					
					
						9
					
					
						, we pop out f5; 6g to form
					
				

				
					
						a rigid substructure (Step 9) and push B
					
					
						9 
					
					
						into STK
					
				

				
					
						(Step 10). Finally, since there is no block left in the graph,
					
				

				
					
						we pop out all nodes in B
					
					
						9 
					
					
						to form a rigid substructure
					
				

				
					
						and terminate (Step 13).
					
				

			

			
				
					
						2.3 Phase 2 of the Algorithm
					
				

				
					
						Phase 2 of our pattern-finding algorithm consists of two
					
				

				
					
						subphases. In subphase A of phase 2, we hash and store the
					
				

				
					
						candidate patterns generated from the graphs in phase 1 in
					
				

				
					
						a 3D table H. In subphase B, we rehash each candidate
					
				

				
					
						pattern into H and calculate its occurrence number. Notice
					
				

				
					
						that in the subphase B, one does not need to store the
					
				

				
					
						candidate patterns in H again.
					
				

				
					
						In processing a rigid substructure (pattern) of a 3D graph,
					
				

				
					
						we choose all three-node combinations, referred to as node-
					
				

				
					
						triplets, in the substructure and hash the node-triplets. We
					
				

				
					
						hash three-node combinations, because to fix a rigid
					
				

				
					
						substructure in the 3D Euclidean space one needs at least
					
				

				
					
						three nodes from the substructure and three nodes are
					
				

				
					
						sufficient provided they are not collinear. Notice that the
					
				

				
					
						proper order of choosing the nodes i;j;k, in a triplet is
					
				

				
					
						significant and has an impact on the accuracy of our
					
				

				
					
						approach, as we will show later in the paper. We determine
					
				

				
					
						the order of the three nodes by considering the triangle
					
				

				
					
						formed by them. The first node chosen always opposes the
					
				

				
					
						longest edge of the triangle and the third node chosen
					
				

				
					
						opposes the shortest edge. For example, in the triangle in
					
				

				
					
						Fig. 6, we choose i;j;k, in that order. Thus, the order is
					
				

				
					
						unique if the triangle is not isosceles or equilateral, which
					
				

				
					
						usually holds when the coordinates are floating point
					
				

			

			
				
					
						Fig. 5. The graph used for illustrating how the Find_Rigid_Substructures
					
				

				
					
						algorithm works.
					
				

			

			
				
					
						Fig. 6. The triangle formed by the three nodes i;j;k.
					
				

			

			
			
		

	


                                    

                                    
                                        
                                            Plik z chomika:

                                        
                                            
                                        

                                        
                                            
                                                
                                                    JLV

                                        

                                    

                                    
                                        
                                            Inne pliki z tego folderu:

                                        	
                                                        using.design.patterns.in.game.engines.PDF
                                                    (25
                                                        KB) 
	
                                                        Wiley - Business Modeling with UML - Business Patterns at Work (2000).pdf
                                                    (4024
                                                        KB) 
	
                                                        Wiley - The Art of Software Architecture.pdf
                                                    (6523
                                                        KB) 
	
                                                        The Object-Oriented Modeling Process Process Patterns For An Architecture-Driven Approach.pdf
                                                    (85
                                                        KB) 
	
                                                        Software Pattern - Design Patterns explained.pdf
                                                    (8120
                                                        KB) 


                                    

                                    
                                        
                                            Inne foldery tego chomika:

                                        	
                                                        C#
                                                    
	
                                                        Databases
                                                    
	
                                                        Java
                                                    


                                    

                                    
                                    

                                
                            
                        
                    
                
            
            
            
                Zgłoś jeśli naruszono regulamin
            

            
            
            

            

    	
                    Strona główna
                
	
                    Aktualności
                
	
                    Kontakt
                
	
                    Dla Mediów
                
	
                    Dział Pomocy
                
	
                    Opinie
                
	
                    Program partnerski
                



                	
                    Regulamin serwisu
                
	
                    Polityka prywatności
                
	
                    Ochrona praw autorskich
                
	
                    Platforma wydawców
                


    
        Copyright © 2012 
            Chomikuj.pl
        
    




        
    
