Wiadomości o enzymach.doc

(112 KB) Pobierz
ENZYMY

ENZYMY

    Inaczej fermenty (z gr. endzyme, co oznacza wewnątrz zaczynu, kwasu). Białka proste lub złożone produkowane w żywych organizmach i katalizujące przebieg reakcji metabolicznych. Skomplikowane katalizatory organiczne wytwarzane przez żywe komórki.
    Enzymy biorą udział we wszystkich reakcjach chemicznych ustroju, stąd ich nazwa: biokatalizatory. W budowie chemicznej enzymu wyróżnia się grupę prostetyczną, czyli koferment zwany inaczej koenzymem, który jest stosunkowo prosty chemicznie, oraz tzw. apoferment - bardzo skomplikowane ciało białkowe. Koferment i apoferment w połączeniu tworzą holoferment czyli enzym.
    Każdy enzym działa wyłącznie na pewną określoną substancję lub na grupę pokrewnych substancji.
    ZE WZGLĘDU NA DZIAŁANIE enzymy podzielono na trzy grupy:
    1. hydrolazy, które powodują rozkład złożonych substancji na prostsze, przy czym zostaje przyłączona woda. Do tej grupy należą proteazy, czyli enzymy proteolityczne rozszczepiające białka, lipazy czyli enzymy lipolityczne rozkładające tłuszcze, ureazy rozkładające mocznik na amoniak i dwutlenek węgla;
    2. dehydrazy odszczepiające wodór, co ma podstawowe znaczenie dla procesów oddychania i fermentacji;
    3. desmolazy powodujące przerwanie tzw. łańcuchów węglowych, czyli połączeń między atomami węgla w jednej cząsteczce.
    Do obu ostatnich grup należą enzymy oddechowe, szczególnie ważne w procesie przemiany materii. Materiał ulegający w organizmie utlenianiu i dostarczający mu w tym procesie energii, np. cukier, nie spala się w ustroju bezpośrednio na dwutlenek węgla i wodę, lecz przechodzi przez szereg reakcji, w których pośredniczą coraz inne enzymy, np. dehydraza, oksydaza itd.
    Enzymy umożliwiają trawienie - proces fizjologiczny występujący u istot cudzożywnych, polegający na rozkładaniu złożonych wielkich cząsteczek (białek, tłuszczy, węglowodanów) na elementy prostsze. Rozbijanie to odbywa się za pomocą enzymów wytwarzanych przez odżywiający się organizm.
    Odpowiednio do typu związków pokarmowych, odróżnia się:
    enzymy proteolityczne - rozszczepiające białka,
    enzymy amylolityczne - rozkładające skrobię i wiele innych węglowodanów oraz
    enzymy lipolityczne - działające na tłuszcze.
    Zazwyczaj w organizmie występuje po kilka enzymów z każdej grupy, czynnych w różnych odczynach środowiska, co gwarantuje bardzo dokładny rozkład określonego związku.
    ROZMIESZCZENIE ENZYMÓW W PRZEWODZIE POKARMOWYM:
    ptyalina w ślinie - rozkłada skrobię na glikozę działając w środowisku zasadowym,
    pepsyna w soku żołądkowym - rozkłada białka na albumozy i peptony działając w środowisku kwaśnym w skutek obecności kwasu solnego,
    trypsyna w dwunastnicy rozkłada cząsteczki białek na aminokwasy w środowisku zasadowym,
    lipaza rozszczepia tłuszcze na glicerynę i kwasy tłuszczowe,
    amylaza podejmuje działalność ptyaliny,
    enzym białkowy - erypsyna w jelicie cienkim (gdzie następuje wchłanianie), rozkłada albumozy i peptony (kontynuacja działalności pepsyny).
    Od 1961r. obowiązuje podział enzymów - opracowany przez Komisję Enzymową Międzynarodowej Unii Biochemicznej - na sześć klas głównych. Kryterium tego podziału stanowi rodzaj przeprowadzanej reakcji.
    1. OKSYDOREDUKTAZY (np. dehydrogenazy, oksydazy) - przenoszą elektrony i protony do odpowiedniego akceptora, enzymy katalizujące reakcje, w których dochodzi do zmiany stopnia utlenienia, na przykład: dehydrogenaza mleczanowa uczestnicząca w wątrobie w pozbywaniu się szkodliwego kwasu mlekowego i oksydaza L-aminokwasowa bezpośrednio utleniająca aminokwasy w mikrociałkach.
    2. TRANSFERAZY (np. aminotransferazy, acetylotransferazy, kinazy) - przenoszące określoną grupę chemiczną (np. aminową, acetylową) z jednego związku do drugiego, czyli katalizujące reakcje przenoszenia grup funkcyjnych z jednej cząsteczki na drugą, na przykład: transaminaza glutaminianowa przenosząca grupę aminową na ketoglutaran przez co powstaje m. in. kwas glutaminowy i syntaza laktozowa przenosząca w gruczołach mlecznych ssaków galaktozę na glukozę przez co powstaje laktoza.
    3. HYDROLAZY (np. proteazy, celulaza, inwertaza) - rozkładające substrat hydrolitycznie, z jednoczesnym przyłączeniem cząsteczki wody. Zazwyczaj są to białka proste przeprowadzające reakcje rozpadu z udziałem wody. Enzymy te rozkładają wiązania w cząsteczkach używając wody - (hydroliza wiązań peptydowych, glikozydowych, estrowych), np.: wszystkie enzymy trawienne układu pokarmowego.
    4. LIAZY (np. dekarboksylazy aminokwasów) odszczepiające pewne grupy od substratu bez udziału wody, czyli katalizują reakcje rozpadu bez udziału wody, przy czym tworzą się zazwyczaj wiązania podwójne, np.: dekarboksylaza pirogronianowa odpowiedzialna za pgronianu dwutlenku węgla, w wyniku czego powstaje aldehyd octowy (fermentacja alkoholowa).
    5. IZOMERAZY - przeprowadzają reakcje przegrupowań wewnątrzcząsteczkowych, czyli przebudowują strukturę cząsteczki bez zmiany jej składu atomowego, np.: izomeraza cytrynianowa katalizująca reakcję przekształcania cytrynianu w izocytrynian (cykl Krebsa).
    6. LIGAZY (syntetazy) - katalizujące tworzenie nowych wiązań, czyli łączenie się dwóch cząsteczek (reakcje syntezy).
    Inną grupę enzymów stanowią ENZYMY RESTRYKCYJNE z grupy endonukleaz, które przecinają nici DNA w miejscu występowania krótkich, kilkunukleotydowych sekwencji, specyficznych dla danego enzymu restrykcyjnego. Występują w komórkach bakteryjnych, gdzie służą do niszczenia obcego DNA, np. bakteriofagowego. Uzyskano już ponad 100 różnych enzymów restrykcyjnych, których nazwy wskazują na źródło ich pochodzenia. Enzymy te znalazły niezwykle szerokie zastosowanie w biologii molekularnej. W inżynierii genetycznej wykorzystuje się enzymy restrykcyjne do cięcia nici DNA. Określone fragmenty DNA otrzymane z dowolnego organizmu w wyniku cięcia enzymami restrykcyjnymi włącza się do niewielkich cząstek DNA mających zdolność autonomicznej replikacji (np. plazmidów lub wirusów). Spełniają one rolę przenośników czyli wektorów, które po wprowadzeniu do komórki gospodarza, np. bakterii, umożliwiają namnażanie się w niej obcych genów i przekazywanie ich komórkom potomnym. Technika ta stwarza teoretycznie nieograniczone możliwości łączenia ze sobą różnych genów, które w komórkach biorcy stanowią matrycę dla syntezy RNA i białek. Pozwala to na dokładne poznanie funkcji ściśle określonych fragmentów DNA i umożliwia produkcję pożądanych białek przez organizmy, które w naturze nie są do tego zdolne.

III Wykrywanie działalności enzymów

Enzymy to biokatalizatory białkowe, regulujące szybkość przebiegu reakcji biochemicznych. Enzymy mogą zostać wyodrębnione z komórek i działać niezależnie od żywych struktur.

Odznaczają się specyficznością działania, tzn., że dany enzym katalizuje jeden, określony typ reakcji biochemicznej i działa na ogół na jeden ściśle określony substrat.

Enzymy to kompleksy białkowe proste lub złożone. Zasadniczą częścią składową każdego enzymu jest grupa czynna, warunkująca łączenie się enzymu z substratem. W przypadku enzymów - białek prostych, rolę grupy czynnej spełniają ugrupowania aminokwasów. W przypadku enzymów - białek złożonych rolę grupy czynnej spełnia część niebiałkowa, czyli jego grupa prostetyczna, zwana koenzymem. Część białkową cząsteczki enzymu nazywamy wówczas apoenzymem.

Aktywny katalitycznie jest wyłącznie kompleks apoenzymu z koenzymem — zwany holoenzymem:

apo-enzym + ko-enzym —> holoenzym aktywny

Funkcję koenzymów spełniaj ą związki drobnocząsteczkowe o różnej budowie chemicznej, np. witaminy; a także organiczne połączenia z metalami Fe, Mn, Cu, Zn, Co. Przykładem grupy prostetycznej jest układ hemowy, stanowiący centrum aktywne katalazy, oksydazy cytochromowej, czy cytochromów.

W niektórych enzymach obie części składowe: koenzym i apoenzym są luźno ze sobą połączone i można je z łatwością rozdzielić, a potem zespolić. Apoenzym warunkuje specyficzność substratową działania enzymu, gdyż wykazuje powinowactwo do substratu. Koenzym określa typ katalizowanego procesu. Ponadto pośredniczy lub uczestniczy w przekazywaniu elektronów i służy jako ostateczny akceptor.

Enzymy podobnie jak katalizatory nieorganiczne przyspieszają reakcje, które są termodynamicznie możliwe. Powodują one obniżenie energii aktywacji, przy czym w mechanizmie działania istotny moment stanowi utworzenie przejściowego połączenia substraty z enzymem -kompleks ES. W takim przejściowym połączeniu następuje rozluźnienie odpowiednich wiązań, czemu towarzyszy aktywacja substratu i zwiększa się jego łatwość wejścia w reakcję. Tworzenie połączenia ES zachodzi jedynie w centrum aktywnym cząsteczki enzymu. Istotne właściwości nadają enzymom struktury II-, III- i IV-rzędowe.

Utworzenie ES polega na przestrzennym ułożeniu substratu względem centrum aktywnego, umożliwiającym przemieszczenie elektronów w obrębie substratu. Centrum aktywne ulega dopasowaniu, czyli zmienia konformację dla określonej konfiguracji substratu.

Etapy reakcji enzymatycznej:
I - łączenie enzymu z substratem;

II - przejście substratu do produktu;

III - odłączenie enzymu od produktu.

Innymi słowy centrum aktywne to obszar enzymu w którym zachodzi kataliza, stąd nazwa nisza katalityczna. Sam proces wiązania substratu przez enzym jest tłumaczony kilkoma teoriami:

 zasada zamka i klucza (teoria Fischera): enzym posiada określone miejsce, które pod względem rozmiaru, kształtu i właściwości chemicznych jest komplementarne z cząsteczką substratu;

 model indukowanego dopasowania się enzymu (teoria Koshlanda): obszar katalityczny enzymu jest elastyczny; obecność substratu indukuje zmiany konformacyjne białka, dzięki czemu następuje właściwe ułożenie grup katalitycznych względem grup funkcyjnych i wiązań w cząsteczce substratu;

 trójpunktowe przyłączenie substratu (model, albo efekt (teoria) Ogstona): substrat przyłącza się do powierzchni enzymu w trzech punktach; położenie cząsteczki substratu wobec enzymu jest jednoznacznie określone, a reakcja zachodzi tylko w jednym z trzech punktów przyłączenia; wyjaśnia swoistość przestrzenną enzymów.

Niektóre enzymy wykazują dużą swoistość w stosunku do substratu. Ich działanie jest często ograniczone tylko do pewnych izomerów; do takich enzymów należą alfa-glikozydazy i beta-glikozydazy.

Szybkość reakcji enzymatycznej zależy od stężeń molowych enzymu i substratu. Przy stałym stężeniu substratu szybkość reakcji jest proporcjonalna do stężenia enzymu. Przy stałym stężeniu enzymu szybkość reakcji jest proporcjonalna do stężenia substratu. Przy całkowitym nasyceniu enzymu substratem szybkość reakcji jest maksymalna.

Pewne substancje mogą hamować reakcje enzymatyczne (inhibitory), inne je przyśpieszać - aktywatory. Na przykład, dla amylazy ślinowej aktywatorem są jony Cl-. Aktywatory sprzyjają uformowaniu właściwej konformacji centrum aktywnego, czyli działają przez efekty allosteryczne. Inhibitorem dla enzymów oddechowych są cyjanki, wykazujące powinowactwo do układu żelazowo-porfirynowego.

O ilości enzymu sadzi się na podstawie przemian szybkości katalizowanej przez niego reakcji. Jednostką standardową enzymu stanowi ta jego ilość, która katalizuje przemianę 1 uM substratu w ciągu l minuty, w temperaturze 30°C, w optymalnym pH i stężeniu substratu.

Zdolność katalityczną enzymu można wyrazić liczbą obrotów, tzn. liczbą cząsteczek substratu przekształconych w ciągu 1 minuty przez centrum aktywne.

Szybkość reakcji enzymatycznej wzrasta wraz ze wzrostem temperatury, jednakże do pewnej wartości maksymalnej. Maximum to przypada zazwyczaj na 40-50°C.

Aktywność katalityczna enzymów zależy od kwasowości, czyli stężenia jonów wodorowych w środowisku. W katalizie enzymatycznej uczestniczą grupy funkcyjne będące w formie jonowej lub niejonowej. W środowisku o wysokim stężeniu jonów wodorowych grupy aminowe są uprotonowane -NH3+, natomiast grupy karboksylowe istnieją w formie niezjonizowanej - COOH. Enzym wówczas nie jest aktywny. Gdy stężenie jonów wodorowych sprzyja dysocjacji grup karboksylowych dochodzi do aktywacji enzymu. Zwiększanie pH przyśpiesza pracę enzymu, ale do pewnego maximum (optimum pH). Dalsze zwiększenie pH powoduje oddysocjowanie jonów wodorowych od grup NH3+. Na przykład pepsyna jest aktywna przy pH niskim 1,5-2, a lipaza przy pH około 6.

Enzymy dzielimy na 6 klas:

I Oksydoreduktazy - katalizują procesy oksydo-redukcyjne (przenoszenie elektronów i protonów na różne akceptory, np. NAD+, NADP+, flawoproteidy).

II Transferazy - katalizują reakcje przenoszenia grup funkcyjnych z cząsteczki donora do cząsteczki akceptora, np. metylowej -CH3 (transmetylazy), aminowej -NH2 (transaminazy), acylowych R-CO-(transacylazy).

III Hydrolazy - katalizują rozpad cząsteczek złożonych na prostsze przy udziale H2O; innymi słowy katalizują przenoszenie grypy funkcyjnej z cząsteczki donora do cząsteczki wody; w ten sposób dochodzi do hydrolizy wiązań estrowych (esterazy), eterowych, glikozydowych (glikozydazy), amidowych (amidazy).

IV Liazy - katalizują reakcję addycji wody, amoniaku lub CO2 do wiązań podwójnych; katalizują również reakcje odwrotne.

V Izomerazy - przebudowują strukturę cząsteczki bez jej rozkładu; katalizują więc wewnątrzcząsteczkowe przegrupowanie atomów, czyli izomerię (izomerazy cis, trans).

VI Ligazy - katalizują reakcje łączenia dwóch substratów, w wyniku czego powstają wiązania C-O, C-S, C-N, C-C. Są to reakcje wymagające nakładu energii ze związków wysokoenergetycznych, np. ATP, GTP.

Oksydazy fenolowe to miedzioproteiny przenoszące wodór z substratu na tlen, w wyniku czego obok głównego produktu powstaje woda. Zmienia się przy tym stopień utlenienia miedzi w enzymie:

2 Cu+ + 2 H+ + 1/2 O2 ---> H2O + 2 Cu2+

Utleniają więc fenole do difenoli, a te z kolei do ciemniejących chinonów (o-difenol do o-dichinonu). Wywołują ciemnienie tkanek roślin uszkodzonych, do których dociera tlen i światło. U człowieka enzym z tej grupy - tyrozynaza (fenolaza) katalizuje przemianę DOPA (3,4-dioksyfenyloalaniny) w kierunku indochinonów i brunatno-czarnej melaniny.

Kwas askorbinowy przeobraża chinon w orto-difenol (reakcja odwrotna) z wytworzeniem kwasu dehydroaskorbinowego. W ustroju człowieka kwas askorbinowy bierze udział w hydroksylacji związków aromatycznych, w utlenieniu fenylolalaniny do p-hydroksyfenylopirogronianu oraz w przemianie kwasu foliowego do folinowego.

Peroksydazy i katalazy

Peroksydazy to hemoproteinowe enzymy oksydoredukcyjne, które przy pomocy nadtlenku wodoru H2O2 utleniają różne substraty. Występują m.in. w tarczycy i granulocytach.

W tarczycy (cytoplazma komórek pęcherzyków) peroksydaza utlenia jony jodu do jodu pierwiastkowego (2 I ---> I2 + 2 e). Jod pierwiastkowy przenika do koloidu, gdzie wiąże się z grupami tyrozynowymi zgromadzonej tam tyreoglobuliny.

Natomiast katalazy to hemproteinowe enzymy oksydoredukcyjne, katalizujące rozkład nadtlenku wodoru do wody i tlenu:

H2O2 + H2O2 ---> 2 H2O + O2

Zapobiegają więc gromadzeniu się toksycznych nadtlenków. Występuje w erytrocytach oraz w...

Zgłoś jeśli naruszono regulamin