zadzarz.pdf

(88 KB) Pobierz
296400 UNPDF
Zestaw I - Rownania i nierownosci kwadratowe, logarytmiczne i wykladnicze.
1. Rozwiazac rownania:
a)−x 2 −x+ 6 = 0 b)x 2 + 3x−4 = 0 c)x 2 −2x+ 6 = 0
d)−x 2 −4x−1 = 0 e)2x 3 +x 2 −13x+ 6 = 0
f)x 4 −4x 3 +x 2 −4x= 0 g)2 2x −2 x = 0
h)4 x −3(2) x −4 = 0 i)4 2x + 3(4) x + 2 = 0
j)3 2x+1 −4(3) x + 1 = 0 k)x(2) x −2 x+1 = 0
l)log 2 (x−4) = 0 m)log 2 (8−2x)−2 log 2 (2−x) = 1
n)log 2 (x−4)−2 = 0 o)(log(x)) 3 −4 log(x) = 0
p)(log(x)) 3 + (log(x)) 2 = 0 q)log x (x+ 2) = 2
r)xlog(x) + log(x)−1 =xs) 3
2x−1 = 2
v)2 sin(2x) + p 3 = 0 w)sin(x) = cos(x)
x)(sin(x)−cos(x)) 2 = sin(2x) y)(cos(x)) 4 −(sin(x)) 4 = 1
z)2(cos(x)) 2 + 3 cos(x)−2 = 0
x+2 |>1
f)|x 2 −2x|2−xg)|x−x 2 |+ 40
h)x 4 +x 3 −x 2 +x−2<0 i)2x 4 −x 3 −3x 2 +x+ 1<0
j)x 5 −2x 4 +x−2>0 k)4 x −2 x 0
l)2 −3x <1 m)3 2x+1 + 5(3) x −2>0
n)2
p (x+1) 1 o)2 2x+1 −3(2) x + 10
p)(x+ 1)(2 x −1)<0 q)log(x 2 −3)0
r)2 log 4 (x+ 1)1 s)log 2 (x−1) + log 2 (x+ 1)2
t)log 4 (x+ 1) 2 1 u)log 2 (x 2 −1)2
v)log 1 2 (x+ 2)<log 1 2 (x+ 1 ) w) 2
p (3)
2
x−2 1
x)sin(x)> 1 2 y)sin(2x)>
3. Wyznaczyc dziedzine fun kcji:
(3 2x −3 x+1 ) b)y= 1− q
(2 x + 3)
c)y= q (1−2 x ) + p xd)y= log (5 x −5 |2x−3| )
e)y= 1 3 x 2 + 5x+ log (3 x 2 −81) f)y= log(x 2 −x+ 2)
g)y= l og(−x) h)y= log(4x−|x 2 −5|) i)y= x
1−log(x)
q
(log 2 (x+ 2)) k)y= q 4−(log 1 2 (x)) 2
j)y=
1
t) |x−2|
|x|−2 = 1 u)2 si n(x)−1 = 0
2. Rozwiazac nierownosci:
a)x 2 −4x+ 3<0 b)−3x 2 −21x−30>0
c)|x|> 1 x d)2|x|−|2x+ 3|<1 e)| x
p (x+1) −4
z)4(cos(x)) 2 −3>0
a)y=x− q
296400.004.png 296400.005.png
l)y=
q
(2 log(x)−(log(x)) 2 ) m)y= 5 log 3+x (−x−1)
Zestaw II - Ciagi liczbowe.
2 n +5
b)lim n!1 log 2 (n+ 3)
c)lim n!1 log 2 (n+1)
log 3 (n+1)
d)lim n!1 n+3
2n 2 +1
e)lim n!1 4n 3 +6
n+1
f)lim n!1 2n 2 +3n
6n 2 +4n−1
g)lim n!1 (4 n + 2)
h)lim n!1 3 n −2 n
4 n −3 n
i)lim n!1 3 2n+1 −7
9 n +4
j)lim n!1 n5 n
2 n 3 n+1
k)lim n!1 2 n
n!
l)lim n!1 2n!
n n
m)lim n!1 (n 2 +1)(2n−1)!
n)lim n!1 (10− p n)
o)lim n!1 n
(2n+1)!+1
p)lim n!1 ( p n− p n+ 2 )
q)lim n!1 (
p n 2 + 1
p
n 2 + 4n+ 1− p
n 2 + 2n)
p n 3 + 1
3 p n 5 +1+1
r)lim n!1
2. Korzystajac z twierdzenia o trzech ciagach obliczyc granice:
a)lim n!1 2n+(−1) n
c)lim n!1 n q
4n 2 −cos(n 2 )
d)lim n!1 n+1 p 2n+ 3
3 + sin(n )
e)lim n!1 n p 3 n + 5 n + 7 n
f)lim n!1 n q
g)lim n!1 n q 3 n +2 n
( 2 3 ) n + ( 3 4 ) n
h)lim n!1 n+2 p
5 n +4 n
3 n + 4 n+1
3. Korzystajac z definicji liczby e obliczyc granice:
a)lim n!1 (1 + 1 n ) 3n−2
2
1. Oblicz podane granice:
a)lim n!1 1
3n+2
b)lim n!1 2n 2 +sin(n!)
296400.006.png 296400.007.png
n 2 ) 2n 2 +1
d)lim n!1 ( n 2 −1
n 2 ) 2n 2 −3
e)lim n!1 ( n+4
n 2 ) 2n 2 +1
g)lim n!1 ( n
n+1 ) n
h)lim n!1 ( 3n+1
3n+2 ) 6n
i)lim n!1 ( n 2 +3n+2
n 2 +2n ) 3n+1
Zestaw IV - Granice funkcji:
1. Obliczyc granice:
a)lim x!0 x+4
x−8 ,
c)lim x!0 x 2 −4
x 2 −x−2 ,
d)lim x!2 x−2
x 2 +x−2 ,
e)lim x!2 |x 4|
p x+2 ,
f)lim x!−1 ( 4x 2 −5x + 7),
g)lim x!0 p 2x 2 + 9,
h)lim x!1 x−1
x 2 +x−2 ,
i)lim x!−1 x+1
x 2 −x−2 ),
j)lim x!2 x 2 −4
x 2 −x−2 ,
k)lim x!2 x 3 −8
x−2 ,
l)lim x!3 x 2 −5x+6
x 2 −8x+15 ,
m)lim x!0 x 3 −4x 2 +5x
(|x|+1)x ,
n)lim x!0 x 3 −4x 2 +5x
4x+x 2 −5x 3 ,
o)lim x!1 2x+2
x 2 −1 ,
p)lim x!−2 (x+2)(3x−1)
4−x 2 ,
x 2 −3x ,
r)lim x!−1 x 2 +5x+4
x 3 +1 ,
s)lim x!0 n4x 2 −3x
7x ,
t)lim x!0 5x 2 −x
2x 2 +x
2. Obliczyc granice:
a)lim x!1 x 1
2− p x ,
3
b)lim n!1 (1 + 1 n ) −2n
c)lim n!1 ( n 2 +2
n+3 ) 5−2n
f)lim n!1 ( n 2 +2
x−2 ,
b)lim x!3 x+2
q)lim x!3 x 2 −9
p x−1 ,
b)lim x!4 x−4
296400.001.png
1− p −x ,
d)lim x!0 x+ p x
p x ,
e)lim x!0 x− p x
p x 2 +1−1
p x +1−1 ,
g)lim x!−2
p x 2 +21−5
x+2 ,
p x 2 +1− p x+1
h)lim x!0
1− p x+1 ,
p x 2 +1− 1
i)lim x!0
p x 2 +25−5 ,
p x 2 +x+1−1
x
j)lim x!0
3. Obliczyc granice:
a)lim x!0 1
(x−1) 2 ,
c)lim x!0 −2
x 4 ,
d)lim x!0 −3
|x|x 2 ,
e)lim x!2 −3
(x−2) 2 ,
f)lim x!1 7
|x−1| ,
g)lim x!−1 5
|x+1|(x+1) 3 ,
h)lim x!−1 18
(x+1) 2 ),
i)lim x!3 5
p |x−3| ,
j)lim x!0 −1
|x|x 4 ,
k)lim x!1 6
|x 2 −1| ,
l)lim x!−1 6
|x 2 −1 ,
m)lim x!2 −3
|−x 2 +4| ,
n)lim x!4 9
(x 2 −9)(x 2 −16) 2
4. Obliczyc granice:
a)lim x!1 (x 3 + 3x 2 −5x−1),
b)lim x!−1 (−x 5 −2x 3 + 4x 2 −5x−9),
c)lim x!1 (x 4 −5x 3 + 7),
d)lim x!−1 (x 2 + 3x−8)(4−x),
e)lim x!1 (−x 5 −x−4),
f)lim x!−1 (−x 7 + 2x−1),
g)lim x!1 (x−1)(x−2)(x+ 3)(x+ 4),
h)lim x!1 3x+1
2x 2 +3 ,
4
c)lim x!−1 −x−1
x + p x ,
f)lim x!0
|x| ,
b)lim x!0 1
5x+2 ,
i)lim x!1 7x 2 −1
296400.002.png
j)lim x!1 ( 3
x+1 2x
4x+5 ),
x+2 2 x ),
l)lim x!1 3x 2 +5
4x 3 +3 ,
m)lim x!1 2x 4 +3
4x 2 +7 ,
n)lim x!1 4x 2 −5
2x 6 −3 ,
o)lim x!1 (x−1)(5−2x)
4x 2 +1 ,
p)lim x!1 x 2 −1
x 2 −3x+2 ,
q)lim x!1 x−2
x 2 −2x+1 ,
r)lim x!1 x 2 +1
2−2x 2 ,
s)lim x!1 5x 2 −3x+11
2−x+2x 2 ,
t)lim x!1 x 6 +2x+4
x 7 +2 ,
x+1 ,
v)lim x!−1
p −x+1
4 p 1−x ,
w)lim x!1 x−1
p 2+x+x ,
5. Obliczyc granice:
a)lim x!1 (1 + 1 x ) x ,
b)lim x!1 (1 + 1 x ) 2x ,
c)lim x!1 (1 + 1 5x ) x ,
d)lim x!1 (1− 1 x ) 5x ,
e)lim x!1 (1− 1 2x ) x ,
f)lim x!1 ( 2x+3
3x+4 ) 2x 2 ,
h)lim x!1 ( x 2 +2
x 2 +3 ) 2x 2 ,
i)lim x!0 (1 +x) 1 x ,
j)lim x!0 (1−3x) 1 x ,
k)lim x!0 (1 + 2x) 1 x
6. Obliczyc granice w punkciex 0 :
a)
( 5x
x+1 dlax2<\{−1}
2 dlax 0 =−1
f(x) =
b)
( 4x 2 +1
f(x) =
3−2x dlax2<\{ 3 2 }
1 dlax 0 = 3 2
5
k)lim x!1 ( 7x
p x
u)lim x!1
2x+5 ) 2x ,
g)lim x!1 ( 3x−1
296400.003.png
 
Zgłoś jeśli naruszono regulamin