Aircom_new_generation_services_1-1.pdf

(615 KB) Pobierz
AIRCOM nw
nRAtIOn sRvICs
rom ACARs to ICAO and IP services
Positioning Paper
Specialists in air transport communications and IT solutions
960619920.031.png 960619920.032.png 960619920.033.png 960619920.034.png 960619920.001.png 960619920.002.png 960619920.003.png 960619920.004.png 960619920.005.png 960619920.006.png 960619920.007.png 960619920.008.png 960619920.009.png 960619920.010.png 960619920.011.png 960619920.012.png 960619920.013.png 960619920.014.png 960619920.015.png 960619920.016.png 960619920.017.png 960619920.018.png 960619920.019.png 960619920.020.png 960619920.021.png 960619920.022.png 960619920.023.png 960619920.024.png 960619920.025.png 960619920.026.png 960619920.027.png 960619920.028.png 960619920.029.png 960619920.030.png
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
ACARS Data Link system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
ACARs Data Link standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
ACARs Application Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
ACARs vH air-ground Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
ACARs Inmarsat satellite air-ground link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
ACARs Iridium satellite air-ground link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
AIRCOM New Generation Service Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
ACARs traffic growth and capacity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Air traffic services use of data link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Aircraft equipage with B/LB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
AIRCOM new generation services overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
AIRCOM VDL/ATN implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
ICAO vH air-ground digital link (vDL) Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Avionics transition from ACARs to vDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
ACARs over vDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
ACARs over vDL user benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
AIRCOM implementation of vDL Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
sItA/AnsP vDL Mode 2 partnerships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Atn nd-to-nd Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
ICAO Atn air-ground protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
sItA Atn service implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
AIRCOM IP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Industry implementation of IP communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Aircraft use of tCP/IP protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
AIRCOM IP Portal and vPAn Management service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
AIRCOM AirportLink Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
In-flight AIRCOM swiftBroadband Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
About sItA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
© sItA 2010
AIRCOM nw nRAtIOn sRvICs 3
Introduction
AIRCOM is implementing new generation services that will initially complement
and over the next 10 to 15 years progressively replace ACARs. the AIRCOM
next generation services will follow two parallel paths: ICAO-defined vDL and
Atn links for Air traffic services (Ats), and IP links for Aircraft Operator
Communications (AOC).
the AIRCOM data link service currently provides air-ground communications via vH radio stations and satellites to the
airline industry using standard Aircraft Communications Addressing and Reporting system (ACARs) cockpit data link
avionics.
ACARs was originally developed to support AOC communications and was expanded from reporting aircraft movements to
also transport aircraft system performance data and Ats communications. As more complex and critical applications were
implemented over ACARs, it became clear that an alternative to the ACARs data link service would eventually be needed.
the first industry definition of such an alternative was produced by the world’s Air navigation service Providers (AnsPs)
through the International Civil Aviation Organization (ICAO), in the standard for the Aeronautical telecommunication network
(Atn) adopted by the ICAO member states in 1998.
the ICAO development of the Atn standard took place in parallel with the ICAO production of other standards defining the
protocols to be used in radio sub-networks: vH Digital Link (vDL), Aeronautical Mobile satellite service (AMss), and H
data link.
the ICAO Atn standard is based on IsO standards for Open systems Interconnection (OsI) that provide the same function
as the un-official Internet Protocol (IP) standards, which have become the de facto standards in telecommunications
products and services.
the AnsPs writing the ICAO Atn standard in the 1990s intended their ground data networks to use Atn routers, but they
are in practice using IP routers. the AnsP’s now plan to use Atn only for aircraft communications, primarily for Controller
Pilot Data Link Communications (CPDLC).
the U single uropean sky process is mandating all aircraft flying in urope to be equipped with CDPLC by around 2015.
the mandate will allow long haul aircraft with Ans CPDLC using ACARs to retain that version but it requires all short haul
aircraft to use Atn/vDL for CPDLC.
sItA has implemented AIRCOM Atn service and deployed vDL Mode 2 ground stations across urope to enable customer
airlines to use the urocontrol initial CDPLC service and will keep expanding that capability to support the full
implementation in urope and later by the Us AA.
Airline AOC are also evolving beyond the capability of ACARs as aircraft are being equipped with lectronic light Bags
(Bs) and other advanced onboard applications (such as lectronic Log Books and electronic manuals). Aircraft and
avionics manufacturers are designing these new generation of AOC systems to use IP air-ground links.
sItA is developing AIRCOM IP service via generic wireless links at airports and broadband satellite links for aircraft in-flight.
the first users will include the AIRBUs A380 and Boeing 787 whose standard equipment includes lectronic light Bags
using IP.
this aircraft system divergence means that in future aircraft will have systems making parallel use of the AIRCOM ACARs,
Atn and IP services. this document describes how the AIRCOM ACARs communications service will be complemented by
a new AIRCOM IP service for AOC, running in parallel with the Atn service for Ats to support both ICAO Atn and
IP services.
4 POsItIOnIn PAPR
© sItA 2010
ACARs Data Link system
ACARs cockpit data link avionics are installed on approximately 10,000 air transport aircraft and approximately 4,000
business and government aircraft. ACARs systems are included by default in most newly delivered turbofan-powered
aircraft.
standard ACARs avionics are sold by companies such as Rockwell Collins and Honeywell, while the ACARs function is
integrated by AIRBUs in their modern aircraft systems using software from Rockwell Collins. similarly this function was also
integrated by Boeing into the 777 using software from Honeywell.
ACARs is used by flight operations applications that are hosted in the ACARs avionics unit and is connected to a Multi-
unction Control and Display Unit and a cockpit printer that provides input/output to pilots.
the ACARs unit is also used as an air-ground router by other airborne systems including the light Management system
and aircraft system monitoring systems called Digital light Data Acquisition Units or Central Maintenance Computers.
the ACARs unit communicates with ground networks via various radio systems, always including a vH radio, and
optionally also satellite avionics and/or an H data radio. Passenger and Cabin application systems can share the use of
the satellite avionics if they are installed.
ACARS Data Link Standards
Airlines, avionics vendors and ACARs service providers had standardized the ACARs system through the former Airlines
lectronic ngineering Committee now called just AC. this committee is organized by the ARInC Industry Affairs
department but its voting members are airlines and its standard groups are open to any interested party including sItA.
the very first implementation of ACARs avionics was in 1978 and at that time AC developed a “Characteristics” 597
defining the first very basic ACARs avionics. that was followed in the mid 1980s by an AC Characteristic 724 specifying
ACARs avionics with a digital interface to other aircraft systems.
the AC avionics standards included a minimal definition of ACARs message formats. the airlines in 1988 recognized the
need to define proper ACARs protocol standards. the following AC documents were produced, primarily by the service
providers and avionics vendors:
AC specification 62;0 “Data Link round system standard and Interface specification”
n
AC specification 618 “Air/round Character Oriented air-ground Protocol”
n
n AC specification 619 “ACARs avionics interfaces with other avionics”
AC 620 applies primarily to the ACARs Data Link service Processor, but implicitly specifies the ACARs Messaging
Protocol between ACARs avionics and airline ground systems. AC 618 specifies the lower layer protocol used between
ACARs Data Link service Processor and ACARs avionics.
AC 618 and 620 specify message formats and content in the form of characters encoded as 7-bit binary codes using
the AsCII or IsO no. 5 alphabet. the ACARs protocol user data is restricted to the AsCII codes that represent printable
characters.
while the ACARs protocol can only transport printable text characters, application developers have found ways to encode
computer data very efficiently in characters so that a lot of information can be transported in the messages that have an
average length of 125 characters.
AC 620 specifies the use on the Data Link service Processor interface to ground systems of the IAtA Messaging format
with its 7-letter addresses. It specifies a message header containing the aircraft registration mark that is used for message
routing by the Data Link service Processor.
© sItA 2010
AIRCOM nw nRAtIOn sRvICs 5
Zgłoś jeśli naruszono regulamin