Kurs AutoCAD - dla zaawansowanych.doc

(1672 KB) Pobierz




 


AutoCAD 2002

AutoCAD 2004. Pierwsze kroki

AutoCAD -- kurs dla zaawansowanych

Witam w kolejnym cyklu lekcji dla użytkowników oprogramowania AutoCAD. Ta seria lekcji będzie w całości poświęcona zagadnieniom projektowania w trzecim wymiarze za pośrednictwem AutoCAD-a. Użyłem w tytule tego cyklu słowa "zaawansowani" w odniesienia do użytkowników ponieważ aby wprawnie pracować w trzecim wymiarze konieczna jest znajomość podstawowych zasad pracy z programem oraz narzędzi służących do rysowania płaskiego.

Rysowanie w trzecim wymiarze otwiera nowe możliwości przed projektantem -- może on nareszcie pokazać inwestorowi, jak dany element będzie wyglądać po jego wytworzeniu. Ponadto projektant będzie mógł eksperymentować na modelu 3D zmieniając jego poszczególne parametry bez ponoszenia kosztów na wykonywanie prototypów na podstawie dokumentacji płaskiej niejednokrotnie naszpikowanej błędami.

Tak więc zapraszam do nauki modelowania w AutoCAD-zie w trzecim wymiarze. Jeśli nie będziemy z tej wiedzy korzystali w danej chwili, na pewno przyda się nam ona w przyszłości.

I.        Wiadomości wstępne -- ułatwianie pracy

1.       Lekcja 1. Rzutnie i ich współpraca z układami współrzędnych

2.       Lekcja 2. Widoki i układy współrzędnych

II.      Modelowanie Bryłowe

1.       Lekcja 3. Bryły proste

2.       Lekcja 4. Algebra Boole'a

3.       Lekcja 5. Wyciągnięcia

4.       Lekcja 6. Bryły obrotowe

III.   Modyfikacje brył

1.       Lekcja 7. Fazowanie i zaokrąglanie krawędzi

2.       Lekcja 8. Tworzenie i usuwanie odcisków, Tworzenie powłoki

3.       Lekcja 9. Modyfikacje ścianek

IV.    Modelowanie krawędziowe i ściankowe

1.       Lekcja 10. Modele krawędziowe

§         Linia

§         Polilinia 3D

§         Nadawanie grubości obiektom

2.       Lekcja 11. Predefiniowane obiekty siatkowe

3.       Lekcja 12. Powierzchnie I

§         Ścianka

§         Siatka

§         Powierzchnie prostoliniowe

4.       Lekcja 13. Powierzchnie II

§         Powierzchnia równoległa

§         Powierzchnia obrotowa

§         Powierzchnia brzegowa

5.       Lekcja 14. Siatki

V.       Modyfikacje modeli 3D

1.       Lekcja 15. Tworzenie szyków 3D, obrót

2.       Lekcja 16. Dopasowanie obiektów 3D

3.       Lekcja 17. Obrót, lustro

4.       Lekcja 18. Modelowanie z zastosowaniem uchwytów

VI.    Rendering

1.       Lekcja 19. Materiały, tło

2.       Lekcja 20. Oświetlenie, rendering

 

 

 

 

 

 

Lekcja 1

Witam w kolejnym cyklu lekcji poświęconych programowi AutoCAD. W trakcie tej porcji wykładów będziemy zgłębiali tajniki projektowania z zastosowaniem trzeciego wymiaru. Narzędzia AutoCAD-a doskonale nadają się do wykonywania modeli 3D, które mogą być następnie wykorzystywane w innych programach, np. w Viz-ie.

Na początek odświeżymy sobie wiadomości związane z rzutniami oraz powiemy kilka zdań na temat ich współpracy z układami współrzędnych. Jako, że tworzenie układów współrzędnych oraz zarządzanie nimi jest tematem kolejnej lekcji, nie będę w tej chwili zagłębiać się w ten problem. Naszym podstawowym celem będzie skupienie się na odpowiednim operowaniu rzutniami, aby praca z modelami trójwymiarowymi była jak najbardziej ergonomiczna. Na początek przygody z 3D proponuję narysować zwykły prostokąt. Będzie on punktem wyjścia do dzisiejszej lekcji. Z jego pomocą pokażę, w jaki sposób można ustawiać rzutnie tak, aby praca z nimi pozwalała na odpowiednie oglądanie danego modelu oraz dorysowywanie do niego odpowiednich elementów.


Rys. 1

Po uruchomieniu programu zwykle mamy na ekranie tylko jedną rzutnię oraz jeden układ współrzędnych zwany globalnym - oznaczenie globalnego układu współrzędnych jest umieszczone w lewym dolnym rogu ekranu.


Rys. 2

W kolejnym kroku proponuję uruchomić pierwszą wersję rzutni, która będzie stanowiła punkt wyjścia do Twoich dalszych prób, drogi Czytelniku. Ustawmy sobie rzutnie w taki sposób, jak niegdyś oferowało stare 3D Studio, a mianowicie jeden duży obszar roboczy oraz trzy małe rzutnie po prawej stronie ekranu.


Rys. 3

Oczywiście ustawienie rzutni jest sprawą indywidualną, ale od czegoś trzeba zacząć. Teraz możemy odpowiednio zmodyfikować nasz rysunek, dodając do każdej rzutni inny lokalny układ współrzędnych. Jak widać, wykonujemy to na płaskim rysunku z powodu jego prostoty i łatwości sprawdzenia, jak dany układ współrzędnych wpływa na parametry rzutni. Zacznijmy zatem definiowanie lokalnych układów współrzędnych. Najpierw przełączmy się do największej rzutni, a następnie wpisujemy z klawiatury polecenie LUW. Następnie z szeregu dostępnych opcji wybieramy polecenie Nowy. Program "poprosi" nas teraz o wskazanie punktu, który ma być początkiem nowego lokalnego układu współrzędnych. Proponuję wskazanie lewego dolnego rogu prostokąta. Spowoduje to uruchomienie lokalnego układu współrzędnych dla danego elementu ze środkiem w punkcie jego wstawienia.


Rys. 4

Dokładnie takie same kroki możemy wykonać dla pozostałych rzutni, ustawiając lokalne układy współrzędnych w różnych miejscach.

Co ma na celu wykonanie takiego prostego ćwiczenia? Już śpieszę z odpowiedzią. Nowsze pakiety oprogramowania przeznaczone do pracy w przestrzeni trójwymiarowej posiadają bardzo zaawansowane możliwości definiowania i modyfikacji tak zwanych płaszczyzn konstrukcyjnych, które możemy zaczepiać w punktach oraz na odpowiednich płaszczyznach modeli 3D. AutoCAD, niestety, nie posiada takich możliwości. Jeśli mamy np. kostkę sześcienną i chcemy w jednej z jej ścianek wywiercić otworek, musimy na tej ściance umieścić odpowiednio usytuowany układ współrzędnych. Z tego powodu powstała ta lekcja przypominająca i utrwalająca materiał dotyczący rzutni oraz lokalnych i globalnych układów współrzędnych. Jak przekonasz się w trakcie lektury kolejnych lekcji, z pozoru błaha sprawa związana z definiowaniem układów współrzędnych będzie strasznie denerwująca, a jej rozwiązaniem może być właśnie stosowanie rzutni, ponieważ układ lokalny zdefiniowany dla danej rzutni jest w niej pamiętany i istnieje możliwość powrotu do niego praktycznie w każdej chwili.

Kolejna lekcja zostanie poświęcona jeszcze dokładniejszemu omówieniu układów współrzędnych, które, jak widać, są sprawą bazową w modelowaniu 3D z zastosowaniem AutoCAD-a, oraz ich współpracy z widokami.

Lekcja 2

Wiemy już, w jaki sposób AutoCAD współpracuje z rzutniami oraz jak definiować w nich odpowiednie lokalne układy współrzędnych. Podczas dzisiejszej lekcji dowiemy się, co to są widoki oraz w jaki sposób z nich korzystać. Pokażę również, jak zdefiniować własne widoki.

Ale od początku. Jak już wiemy, podczas modelowania w przestrzeni trójwymiarowej często zachodzi konieczność zdefiniowania lokalnego układu współrzędnych (LUW). Do tej pory LUW-y były definiowane na płaszczyźnie, więc widoki izometryczne na stałe zdefiniowane w AutoCAD-zie były praktycznie zbędne. Teraz, kiedy nasza przestrzeń modelowania została rozszerzona o dodatkową współrzędną - Z - widoki izometryczne będą więcej niż przydatnym narzędziem podczas tworzenia projektów. Zaraz postaram się udowodnić moje twierdzenie, i to najlepiej poprzez przykład. Proponuję nieznacznie wyprzedzić kolejne lekcje i narysować teraz nasz pierwszy element 3D. Niech będzie to bryła oznaczona jako Kostka. Zanim jednak zaczniemy rysowanie kostki, wybierzmy z menu Widok->Widoki3D opcję Izometryczny SW.


Rys. 1

Mając ustawiony jeden z widoków izometrycznych - obrazuje to odpowiednie ustawienie znacznika Głównego Układu Współrzędnych (GUW) - możemy zabrać się za tworzenie kostki.


Rys. 2

W tym celu z menu Rysuj wybieramy opcję Bryły, a następnie Kostka.


Rys. 3

Teraz AutoCAD prosi o wskazanie pierwszego narożnika kostki - proponuję kliknięcie w dowolnym miejscu przestrzeni.


Rys. 4

Po wskazaniu odpowiedniego punktu program zapyta nas, czy chcemy podać długość pierwszego boku, czy też chcemy, aby narysowana kostka była regularnym sześcianem - oczywiście my chcemy, aby kostka była prostopadłościenna, z tego powodu wybierzemy parametr D. Teraz będziemy mogli podać jej długość, np. 50 jednostek. Po zatwierdzeniu długości podajemy szerokość, np. 80 jednostek, a następnie podajemy wysokość prostopadłościanu, np. 40 jednostek.


Rys. 5

Nasz prostopadłościan powinien wyglądać następująco.


Rys. 6

Mamy odpowiedni model, aby przećwiczyć na nim przydatność używania widoków izometrycznych oraz innych widoków zdefiniowanych w programie. Na dobry początek z menu Widok wybierzmy opcję Widoki 3D, a następnie wybierzmy sobie opcję Góra.


Rys. 7

Po wybraniu tej opcji AutoCAD pokaże nam standardowo zdefiniowany widok górnej płaszczyzny kostki.


Rys. 8

Oczywiście kolejne widoki będą pokazywały naszą kostkę z odpowiednio innej strony. Widoki izometryczne będą natomiast generowały odpowiedni rzut sceny, można powiedzieć obrazowo: pod odpowiednim kątem.


Rys. 9

Wszystko zatem ładnie działa, możemy sobie rysować bryły i oglądać je praktycznie z dowolnej strony z zastosowaniem zdefiniowanych widoków, ale jak możemy dorysować cokolwiek do naszego projektu . czyli w jaki sposób praktycznie wykorzystać zdefiniowane widoki. I tu, jak się domyślasz Drogi Czytelniku, z pomocą znów przyjdą LUW-y. Mając możliwość oglądania bryły z zastosowaniem izometrii, możemy dowolnie manipulować wstawianymi LUW-ami, wykorzystując pełny wgląd w ich ułożenie na rysunku. Proponuję teraz ustawienie kostki w dowolnym rzucie izometrycznym i dodanie lokalnego układu współrzędnych posiadającego początek w jednym z dowolnych wierzchołków.


Rys. 10

Mając tak ustawiony LUW, możemy spokojnie narysować cokolwiek na dolnej podstawie prostopadłościanu.


Rys. 11

Jeśli chcemy jednak dorysować coś na przedniej ścianie tego widoku, wystarczy dokonać obrotu LUW-a o 90 stopni względem osi X. W tym celu z menu Narzędzia wybieramy opcję Nowy LUW, a następnie Obrót wokół osi X.


Rys. 12

Teraz wystarczy podać odpowiedni kąt obrotu, proponuję zostawić domyślny 90 stopni.


Rys. 13

I już możemy spokojnie dorysować cokolwiek na przedniej ściance kostki.


Rys. 14

Na tym etapie proponuję zakończenie dzisiejszej lekcji, ponieważ nadszedł czas na samodzielną pracę z modelem. Zachęcam do przetestowania innych ustawień widoków oraz zastosowania w nich odpowiednich lokalnych układów współrzędnych. Podczas kolejnej lekcji będziemy tworzyli bryły proste, które będą wykorzystywane w 80% projektów.

Lekcja 3

W poprzednich lekcjach napisałem, jak zarządzać oglądaniem projektów tworzonych w przestrzeni trójwymiarowej. Podczas tej lekcji dowiemy się, w jaki sposób tworzyć podstawowe bryły trójwymiarowe. Aby nie przeciągać wstępów, proponuję uruchomienie dwóch bardzo przydatnych pasków narzędzi. Pierwszy pasek, zatytułowany Widok, pozwoli na łatwiejsze przełączanie się pomiędzy standardowymi widokami zdefiniowanymi w programie.


Rys. 1

Drugi pasek narzędzi będzie pomocny podczas wstawiania brył do rysunku. Pamiętasz Drogi Czytelniku, jaką długą drogę trzeba było pokonać, aby dostać się do narzędzia pozwalającego na wygenerowanie kostki. Teraz wystarczy nacisnąć odpowiednią ikonę na pasku Bryły.


Rys. 2

Tyle na początek, teraz zabierzmy się za tworzenie standardowych brył. Zacznijmy od ustawienia jednego z widoków izometrycznych, aby łatwiej było obserwować tworzone modele. Wiemy już, jak wykonać prostopadłościan, wykonywaliśmy go podczas poprzedniej lekcji, więc naukę tworzenia brył zaczniemy od wykonania sześcianu. W tym celu klikamy na ikonie Kostka na pasku narzędziowym Bryły.


Rys. 3

Następnie wskazujemy pierwszy narożnik kostki w przestrzeni trójwymiarowej, klikając w dowolnym miejscu. W kolejnym kroku program zada pytanie, czy chcemy, aby tworzona kostka była sześcianem. Oczywiście odpowiadamy twierdząco poprzez wybranie opcji S. Teraz nie pozostaje nic innego, jak podać długość boku sześcianu, np. 80 jednostek. Kostka sześcienna jest gotowa.


Rys. 4

Kolejną bryłą, jaką wykonamy, będzie Sfera. W tym celu klikamy na ikonie Sfera na pasku narzędziowym Bryły.


Rys. 5

Następnie wskazujemy punkt w przestrzeni trójwymiarowej będący środkiem sfery. Po jego wskazaniu AutoCAD poprosi nas, abyśmy podali długość promienia bądź średnicę sfery. Proponuję ustalenie promienia sfery na 40 jednostek. Po tych zabiegach nasza pierwsza sfera jest gotowa.


Rys. 6

Walec będzie kolejną bryłą, jaką wykonamy podczas tej lekcji. W celu wstawienia walca do rysunku klikamy na ikonie Walec na pasku narzędziowym Bryły.


Rys. 7

W następnym kroku określamy punkt centralny podstawy walca, klikając w dowolnym miejscu w przestrzeni trójwymiarowej. Następnie określamy promień lub średnicę podstawy - ustalmy go np. na 50 jednostek. Teraz podajemy wysokość walca poprzez wprowadzenie danych bezpośrednio z klawiatury bądź poprzez wskazanie środka drugiej podstawy walca. Proponuję tu podać wysokość z klawiatury i określić ją np. na 100 jednostek. Nasz walec jest gotowy.


Rys. 8

Kolejną bryłą, jaką weźmiemy na warsztat, jest stożek. W celu wstawienia stożka do rysunku klikamy na jego ikonie na pasku narzędziowym Bryły.


Rys. 9

Następnie, zwyczajowo, klikamy w dowolnym miejscu przestrzeni trójwymiarowej w celu określenia punktu będącego środkiem podstawy stożka. W kolejnym kroku podajemy promień podstawy, a następnie wysokość stożka.


Rys. 10

Bardzo często podczas tworzenia projektów architektonicznych używa się bryły o nazwie Klin. Teraz narysujemy taką bryłę. W tym celu klikamy na ikonie tego elementu umieszczonej na pasku narzędzi Bryły.


Rys. 11

Następnie wskazujemy pierwszy narożnik klina i podajemy kolejno długości boków prostokąta tworzącego podstawę bryły. W kolejnym kroku wprowadzamy wysokość klina.


Rys. 12

Ostatnią bryłą, jaką poznamy w ramach tej lekcji, będzie Torus. Klikamy zatem na jej ikonie.


Rys. 13

Następnie, w kolejnym kroku, wskazujemy, jak zwykle, środek bryły, oraz podajemy dwa promienie - jeden będący całkowitym promieniem bryły i drugi będący promieniem tuby składającej się na kształt bryły.


Rys. 14

Teraz wiemy już, w jaki sposób tworzyć kolejne bryły. Zachęcam do przećwiczenia wszystkich opcji, jakie oferuje AutoCAD podczas wstawiania kolejnych brył w przestrzeń modelu. Takie eksperymenty pozwolą na bardziej elastyczne podejście do projektowania w przyszłości. Na zakończenie dodam jedynie, że zmienna ISOLINES, która zawsze pojawia się na prezentowanych rysunkach, odpowiada za zagęszczenie linii na prezentowanych modelach. Zmiana jej wartości np. na 10 spowoduje, że bryły będą bardziej czytelne.


Rys. 15

Niestety, wynikowy plik DWG będzie również miał większe rozmiary, a program na słabszych komputerach może spowolnić pracę.

Lekcja 4

Podczas dzisiejszej lekcji poznamy metody wycinania brył przy pomocy innych brył z zastosowaniem algebry Boole'a. Oczywiście całą lekcję oprzemy na przykładach pozwalających na praktyczne prześledzenie stosowania takiej techniki modelowania.

Na początek proponuję otwarcie kolejnego paska narzędzia zatytułowanego Edycja brył.


Rys. 1

Pasek ten będzie nam towarzyszył podczas wielu lekcji, więc jego obecność jest jak najbardziej wskazana. Kolejną zmianą, jaką proponuję wykonać, aby praca w przestrzeni 3D była bardziej efektowna, jest mimo wszystko zwiększenie wartości zmiennej ISOLINES na do 10. Wpływ tej zmiany na pracę programu opisałem w poprzedniej lekcji, lecz jestem przekonany, że Czytelnicy dysponują w miarę mocnymi maszynami.

Mając przygotowane środowisko pracy możemy zacząć tworzyć bardziej zaawansowane bryły na bazie brył podstawowych. Pierwsze ćwiczenie pozwoli nam na wykonanie prostej podkładki. Oczywiście, jak już niejednokrotnie pisałem, metod wykonania takiego elementu jest tyle ilu jest projektantów, z tego powodu proszę traktować kolejne ćwiczenia raczej jako podpowiedź niż jedyną słuszną drogę postępowania. Zaczniemy od narysowania walca o wysokości 3 jednostek i średnicy 50 jednostek.


Rys. 2

W kolejnym kroku proponuję zdefiniowanie nowego lokalnego układu współrzędnych w środku okręgu dolnej płaszczyzny. Oczywiście nie jest to konieczne, lecz wyrobi w nas to dobre nawyki. Lokalny układ współrzędnych wstawiamy poprzez użycie polecenia LUW.


Rys. 3

Teraz możemy wstawić do rysunku kolejny walec, który będzie posiadał wymiary równe średnicy otworu podkładki. Podczas wstawiania walca oczywiście zatwierdzamy położenie środka podstawy w punkcie (0, 0, 0) - po to między innymi wstawiliśmy LUW w środek dużego walca. Proponuję również ustalenie średnicy walca na 20 jednostek oraz jego wysokość na 10 jednostek.


Rys. 4

W kolejnym kroku musimy spowodować, aby mniejszy walec odjął swoją objętość od większego. W tym celu proponuję kliknąć na ikonie różnicy logicznej.


Rys. 5

Teraz wskazujemy obiekt, który ma zostać wycięty i potwierdzamy nasz wybór prawym klawiszem myszy, następnie wskazujemy obiekt, który odejmujemy i również zatwierdzamy wybór prawym klawiszem myszy. Nasza podkładka powinna teraz wyglądać tak jak na poniższym rysunku.


Rys. 6

...

Zgłoś jeśli naruszono regulamin